版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年河南省各地?cái)?shù)學(xué)高一下期末綜合測(cè)試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,則下列結(jié)論不正確的是()A. B. C. D.2.中,,則是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰直角三角形3.如圖,正四棱柱中(底面是正方形,側(cè)棱垂直于底面),,則異面直線與所成角的余弦值為()A. B. C. D.4.(2016高考新課標(biāo)III,理3)已知向量,則ABC=A.30 B.45 C.60 D.1205.邊長(zhǎng)為1的正方形上有一動(dòng)點(diǎn),則向量的范圍是()A. B. C. D.6.已知m個(gè)數(shù)的平均數(shù)為a,n個(gè)數(shù)的平均數(shù)為b,則這個(gè)數(shù)的平均數(shù)為()A. B. C. D.7.?dāng)?shù)列{an}的通項(xiàng)公式an=,若{an}前n項(xiàng)和為24,則n為().A.25 B.576 C.624 D.6258.已知數(shù)列的前項(xiàng)和為,直線與圓:交于兩點(diǎn),且.記,其前項(xiàng)和為,若存在,使得有解,則實(shí)數(shù)取值范圍是()A. B. C. D.9.函數(shù),當(dāng)上恰好取得5個(gè)最大值,則實(shí)數(shù)的取值范圍為()A. B. C. D.10.某正弦型函數(shù)的圖像如圖,則該函數(shù)的解析式可以為().A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知與的夾角為,,,則________.12.若直線與直線平行,則實(shí)數(shù)a的值是________.13.______.14.已知直線與直線互相平行,則______.15.設(shè)為等差數(shù)列的前n項(xiàng)和,,則________.16.已知實(shí)數(shù)滿足,則的最大值為_(kāi)______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.在三棱柱中,平面ABC,,,D,E分別為AB,中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)求證:四邊形為平行四邊形;(Ⅲ)求證:平面平面.18.設(shè)數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.19.如圖1,在直角梯形中,,,點(diǎn)在上,且,將沿折起,使得平面平面(如圖2).為中點(diǎn)(1)求證:;(2)求四棱錐的體積;(3)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由20.已知在三棱錐S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求證:AD⊥平面SBC.21.已知數(shù)列{}的首項(xiàng).(1)求證:數(shù)列為等比數(shù)列;(2)記,若,求最大正整數(shù).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
A、B利用不等式的基本性質(zhì)即可判斷出;C利用指數(shù)函數(shù)的單調(diào)性即可判斷出;D利用基本不等式的性質(zhì)即可判斷出.【詳解】A,
∵b<a<0,∴?b>?a>0,∴,正確;B,∵b<a<0,∴,正確;C,
,因此C不正確;D,,正確,綜上可知:只有C不正確,故選:C.【點(diǎn)睛】本題主要考查不等式的基本性質(zhì),屬于基礎(chǔ)題.解答過(guò)程注意考慮參數(shù)的正負(fù),確定不等號(hào)的方向是解題的關(guān)鍵.2、C【解析】
由平面向量數(shù)量積運(yùn)算可得,即,得解.【詳解】解:在中,,則,即,則為鈍角,所以為鈍角三角形,故選:C.【點(diǎn)睛】本題考查了平面向量數(shù)量積運(yùn)算,重點(diǎn)考查了向量的夾角,屬基礎(chǔ)題.3、A【解析】
試題分析:連結(jié),異面直線所成角為,設(shè),在中考點(diǎn):異面直線所成角4、A【解析】試題分析:由題意,得,所以,故選A.【考點(diǎn)】向量的夾角公式.【思維拓展】(1)平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;(2)由向量的數(shù)量積的性質(zhì)知,,,因此,利用平面向量的數(shù)量積可以解決與長(zhǎng)度、角度、垂直等有關(guān)的問(wèn)題.5、A【解析】
分類,按在正方形的四條邊上分別求解.【詳解】如圖,分別以為建立平面直角坐標(biāo)系,,設(shè),,∴,當(dāng)在邊或上時(shí),,所以,當(dāng)在邊上時(shí),,,當(dāng)在邊上時(shí),,,∴的取值范圍是.故選:A.【點(diǎn)睛】本題考查平面向量的數(shù)量積,通過(guò)建立坐標(biāo)系,把向量和數(shù)量積用坐標(biāo)表示,使問(wèn)題簡(jiǎn)單化.6、D【解析】
根據(jù)平均數(shù)的定義求解.【詳解】?jī)山M數(shù)的總數(shù)為:則這個(gè)數(shù)的平均數(shù)為:故選:D【點(diǎn)睛】本題主要考查了平均數(shù)的定義,還考查了運(yùn)算求解能力,屬于基礎(chǔ)題.7、C【解析】an==-(),前n項(xiàng)和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故選C.8、D【解析】
根據(jù)題意,先求出弦長(zhǎng),再表示出,得到,求出數(shù)列的通項(xiàng)公式,再表示出,用錯(cuò)位相減求和求出,再求解即可.【詳解】根據(jù)題意,圓的半徑,圓心到直線的距離,所以弦長(zhǎng),所以,當(dāng)時(shí),,所以,時(shí),,所以,得,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,所以,,,所以,,,所以,由有解,,只需大于的最小值即可,因?yàn)?,所以,所?故選:D【點(diǎn)睛】本題主要考查求圓的弦長(zhǎng)、由和求數(shù)列通項(xiàng)、錯(cuò)位相減求數(shù)列的和和解不等式有解的情況,考查學(xué)生的分析轉(zhuǎn)化能力和計(jì)算能力,屬于難題.9、C【解析】
先求出取最大值時(shí)的所有的解,再解不等式,由解的個(gè)數(shù)決定出的取值范圍.【詳解】設(shè),所以,解得,所以滿足的值恰好只有5個(gè),所以的取值可能為0,1,2,3,4,由,故選C.【點(diǎn)睛】本題主要考查正弦函數(shù)的最值以及不等式的解法,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力.10、C【解析】試題分析:由圖象可得最大值為2,則A=2,周期,∴∴,又,是五點(diǎn)法中的第一個(gè)點(diǎn),∴,∴把A,B排除,對(duì)于C:,故選C考點(diǎn):本題考查函數(shù)的圖象和性質(zhì)點(diǎn)評(píng):解決本題的關(guān)鍵是確定的值二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
將平方再利用數(shù)量積公式求解即可.【詳解】因?yàn)?故.化簡(jiǎn)得.因?yàn)?,?故答案為:3【點(diǎn)睛】本題主要考查了模長(zhǎng)與數(shù)量積的綜合運(yùn)用,經(jīng)常利用平方去處理.屬于基礎(chǔ)題.12、0【解析】
解方程即得解.【詳解】因?yàn)橹本€與直線平行,所以,所以或.當(dāng)時(shí),兩直線重合,所以舍去.當(dāng)時(shí),兩直線平行,滿足題意.故答案為:【點(diǎn)睛】本題主要考查兩直線平行的性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.13、【解析】
先令,得到,兩式作差,根據(jù)等比數(shù)列的求和公式,化簡(jiǎn)整理,即可得出結(jié)果.【詳解】令,則,兩式作差得:所以故答案為:【點(diǎn)睛】本題主要考查數(shù)列的求和,熟記錯(cuò)位相加法求數(shù)列的和即可,屬于??碱}型.14、【解析】
由兩直線平行得,,解出值.【詳解】由直線與直線互相平行,得,解得.故答案為:.【點(diǎn)睛】本題考查兩直線平行的性質(zhì),兩直線平行,一次項(xiàng)系數(shù)之比相等,但不等于常數(shù)項(xiàng)之比,屬于基礎(chǔ)題.15、54.【解析】
設(shè)首項(xiàng)為,公差為,利用等差數(shù)列的前n項(xiàng)和公式列出方程組,解方程求解即可.【詳解】設(shè)首項(xiàng)為,公差為,由題意,可得解得所以.【點(diǎn)睛】本題主要考查了等差數(shù)列的前n項(xiàng)和公式,解方程的思想,屬于中檔題.16、【解析】
根據(jù)約束條件,畫(huà)出可行域,目標(biāo)函數(shù)可以看成是可行域內(nèi)的點(diǎn)和的連線的斜率,從而找到最大值時(shí)的最優(yōu)解,得到最大值.【詳解】根據(jù)約束條件可以畫(huà)出可行域,如下圖陰影部分所示,目標(biāo)函數(shù)可以看成是可行域內(nèi)的點(diǎn)和的連線的斜率,因此可得,當(dāng)在點(diǎn)時(shí),斜率最大聯(lián)立,得即所以此時(shí)斜率為,故答案為.【點(diǎn)睛】本題考查簡(jiǎn)單線性規(guī)劃問(wèn)題,求目標(biāo)函數(shù)為分式的形式,關(guān)鍵是要對(duì)分式形式的轉(zhuǎn)化,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析(Ⅲ)見(jiàn)解析【解析】
(Ⅰ)只需證明,,即可得平面;(Ⅱ)可得四邊形為平行四邊形,,,即可得四邊形為平行四邊形;(Ⅲ)易得平面,即可得平面平面.【詳解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分別為、的中點(diǎn),∴,,即四邊形為平行四邊形,∴,,∴四邊形為平行四邊形.(Ⅲ)∵,為中點(diǎn),∴,又∵,且,∴平面,而平面,∴平面平面.【點(diǎn)睛】本題考查了空間點(diǎn)、線、面位置關(guān)系,屬于基礎(chǔ)題.18、(1);(2)【解析】
(1)由,且,可得當(dāng)也適合,;(2)∵19、(1)證明見(jiàn)解析(2)(3)存在,【解析】
(1)證明DG⊥AE,再根據(jù)面面垂直的性質(zhì)得出DG⊥平面ABCE即可證明(2)分別計(jì)算DG和梯形ABCE的面積,即可得出棱錐的體積;(3)過(guò)點(diǎn)C作CF∥AE交AB于點(diǎn)F,過(guò)點(diǎn)F作FP∥AD交DB于點(diǎn)P,連接PC,可證平面PCF∥平面ADE,故CP∥平面ADE,根據(jù)PF∥AD計(jì)算的值.【詳解】(1)證明:因?yàn)闉橹悬c(diǎn),,所以.因?yàn)槠矫嫫矫?,平面平面,平面,所以平?又因?yàn)槠矫?,?2)在直角三角形中,易求,則所以四棱錐的體積為(3)存在點(diǎn),使得平面,且=3:4過(guò)點(diǎn)作交于點(diǎn),則.過(guò)點(diǎn)作交于點(diǎn),連接,則.又因?yàn)槠矫嫫矫?,所以平?同理平面.又因?yàn)?,所以平面平?因?yàn)槠矫?,所以平面,由,則=3:4【點(diǎn)睛】本題考查了面面垂直的性質(zhì),面面平行性質(zhì),棱錐的體積計(jì)算,屬于中檔題.20、證明見(jiàn)解析【解析】
先由SA⊥面ABC,得BC⊥SA,又BC⊥AC,得BC⊥面SAC,故BC⊥AD,又SC⊥AD,所以AD⊥面SBC.【詳解】證明:因?yàn)镾A⊥面ABC,BC面ABC,所以BC⊥SA;又由∠ACB=,得BC⊥AC,且AC、SA是面SAC內(nèi)的兩相交線,所以BC⊥面SAC;又AD面SAC,所以BC⊥AD,又已知SC⊥AD,且BC、SC是面SBC內(nèi)兩相交線,所以AD⊥面S
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 機(jī)場(chǎng)航站樓樓頂廣告字施工合同
- 戲劇學(xué)院舞蹈教師聘用合同
- 免租金專賣店租賃合同
- 行政復(fù)議律師聘請(qǐng)合同模板
- 電視選秀節(jié)目選手合同
- 酒店宴會(huì)音響租賃合同模板
- 農(nóng)村土地承包租賃合同
- 汽車保險(xiǎn)城地下停車位租賃合同
- 建筑工程臨時(shí)用工合同
- 紅培教育合作協(xié)議
- DB52T 1776.1-2023 耕地質(zhì)量等別評(píng)價(jià) 第1部分:評(píng)價(jià)規(guī)范
- BIM工程師年終總結(jié)
- 2024秋季新教材人教版體育與健康一年級(jí)上冊(cè)課件:1我們愛(ài)運(yùn)動(dòng)
- 領(lǐng)導(dǎo)年終總結(jié)匯報(bào)工作
- CQI-23模塑系統(tǒng)評(píng)估審核表-中英文
- 2024年大型游樂(lè)設(shè)施操作(Y2)特種作業(yè)取證(廣東)考試復(fù)習(xí)題庫(kù)(含答案)
- 【教案】Unit+4+My+Favourite+Subject大單元整體教學(xué)設(shè)計(jì)人教版英語(yǔ)七年級(jí)上冊(cè)
- 2024年省國(guó)資委選聘兼職外部董事人選高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 2024-2030年中國(guó)工控機(jī)行業(yè)需求狀況及發(fā)展趨勢(shì)分析研究報(bào)告
- 離職證明(標(biāo)準(zhǔn)模版)
- 遼寧省名校聯(lián)盟2024年高三9月份聯(lián)合考試 英語(yǔ)試卷(含答案詳解)
評(píng)論
0/150
提交評(píng)論