版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川南充市嘉陵區(qū)中考數(shù)學(xué)仿真試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.某班組織了針對(duì)全班同學(xué)關(guān)于“你最喜歡的一項(xiàng)體育活動(dòng)”的問卷調(diào)查后,繪制出頻數(shù)分布直方圖,由圖可知,下列結(jié)論正確的是()A.最喜歡籃球的人數(shù)最多 B.最喜歡羽毛球的人數(shù)是最喜歡乒乓球人數(shù)的兩倍C.全班共有50名學(xué)生 D.最喜歡田徑的人數(shù)占總?cè)藬?shù)的10%2.如果代數(shù)式有意義,則實(shí)數(shù)x的取值范圍是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥33.如圖,是半圓圓的直徑,的兩邊分別交半圓于,則為的中點(diǎn),已知,則()A. B. C. D.4.如圖,A、B兩點(diǎn)在雙曲線y=上,分別經(jīng)過A、B兩點(diǎn)向軸作垂線段,已知S陰影=1,則S1+S2=()A.3 B.4 C.5 D.65.如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長(zhǎng)是6米,C是OA的中點(diǎn),點(diǎn)D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是()A.米2 B.米2 C.米2 D.米26.有以下圖形:平行四邊形、矩形、等腰三角形、線段、菱形,其中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有()A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)7.如圖,矩形ABCD中,AB=3,AD=4,連接BD,∠DBC的角平分線BE交DC于點(diǎn)E,現(xiàn)把△BCE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),記旋轉(zhuǎn)后的△BCE為△BC′E′.當(dāng)線段BE′和線段BC′都與線段AD相交時(shí),設(shè)交點(diǎn)分別為F,G.若△BFD為等腰三角形,則線段DG長(zhǎng)為()A. B. C. D.8.下列方程中,兩根之和為2的是()A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=09.已知關(guān)于x的二次函數(shù)y=x2﹣2x﹣2,當(dāng)a≤x≤a+2時(shí),函數(shù)有最大值1,則a的值為()A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣310.如圖,中,,且,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為A(1,0),等腰直角三角形ABC的邊AB在x軸的正半軸上,∠ABC=90°,點(diǎn)B在點(diǎn)A的右側(cè),點(diǎn)C在第一象限。將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)75°,如果點(diǎn)C的對(duì)應(yīng)點(diǎn)E恰好落在y軸的正半軸上,那么邊AB的長(zhǎng)為____.12.閱讀理解:引入新數(shù)i,新數(shù)i滿足分配律、結(jié)合律、交換律,已知i2=﹣1,那么(1+i)?(1﹣i)的平方根是_____.13.如圖所示一棱長(zhǎng)為3cm的正方體,把所有的面均分成3×3個(gè)小正方形.其邊長(zhǎng)都為1cm,假設(shè)一只螞蟻每秒爬行2cm,則它從下底面點(diǎn)A沿表面爬行至側(cè)面的B點(diǎn),最少要用_____秒鐘.14.二次函數(shù)中的自變量與函數(shù)值的部分對(duì)應(yīng)值如下表:…………則的解為________.15.如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點(diǎn)D,交OB于點(diǎn)C,連接CD交直線OA于點(diǎn)E,若∠B=30°,則線段AE的長(zhǎng)為.16.因式分解:______.17.如圖,將量角器和含30°角的一塊直角三角板緊靠著放在同一平面內(nèi),使三角板的0cm刻度線與量角器的0°線在同一直線上,且直徑DC是直角邊BC的兩倍,過點(diǎn)A作量角器圓弧所在圓的切線,切點(diǎn)為E,則點(diǎn)E在量角器上所對(duì)應(yīng)的度數(shù)是____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,B,M,N均在格點(diǎn)上,P為線段MN上的一個(gè)動(dòng)點(diǎn)(1)MN的長(zhǎng)等于_______,(2)當(dāng)點(diǎn)P在線段MN上運(yùn)動(dòng),且使PA2+PB2取得最小值時(shí),請(qǐng)借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點(diǎn)P的位置,并簡(jiǎn)要說明你是怎么畫的,(不要求證明)19.(5分)甲、乙兩名隊(duì)員的10次射擊訓(xùn)練,成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖.并整理分析數(shù)據(jù)如下表:平均成績(jī)/環(huán)中位數(shù)/環(huán)眾數(shù)/環(huán)方差甲771.2乙78(1)求,,的值;分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡(jiǎn)要分析這兩名隊(duì)員的射擊訓(xùn)練成績(jī).若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?20.(8分)某新建火車站站前廣場(chǎng)需要綠化的面積為46000米2,施工隊(duì)在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項(xiàng)綠化工程.該項(xiàng)綠化工程原計(jì)劃每天完成多少米2?該項(xiàng)綠化工程中有一塊長(zhǎng)為20米,寬為8米的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?21.(10分)已知:不等式≤2+x(1)求不等式的解;(2)若實(shí)數(shù)a滿足a>2,說明a是否是該不等式的解.22.(10分)已知△ABC內(nèi)接于⊙O,AD平分∠BAC.(1)如圖1,求證:;(2)如圖2,當(dāng)BC為直徑時(shí),作BE⊥AD于點(diǎn)E,CF⊥AD于點(diǎn)F,求證:DE=AF;(3)如圖3,在(2)的條件下,延長(zhǎng)BE交⊙O于點(diǎn)G,連接OE,若EF=2EG,AC=2,求OE的長(zhǎng).23.(12分)解分式方程:-1=24.(14分)甲、乙兩人在5次打靶測(cè)試中命中的環(huán)數(shù)如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填寫下表:平均數(shù)
眾數(shù)
中位數(shù)
方差
甲
8
8
0.4
乙
9
3.2
(2)教練根據(jù)這5次成績(jī),選擇甲參加射擊比賽,教練的理由是什么?(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績(jī)的方差.(填“變大”、“變小”或“不變”).
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】【分析】觀察直方圖,根據(jù)直方圖中提供的數(shù)據(jù)逐項(xiàng)進(jìn)行分析即可得.【詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數(shù)最多,故A選項(xiàng)錯(cuò)誤;B.最喜歡羽毛球的人數(shù)是最喜歡田徑人數(shù)的兩倍,故B選項(xiàng)錯(cuò)誤;C.全班共有12+20+8+4+6=50名學(xué)生,故C選項(xiàng)正確;D.最喜歡田徑的人數(shù)占總?cè)藬?shù)的=8%,故D選項(xiàng)錯(cuò)誤,故選C.【點(diǎn)睛】本題考查了頻數(shù)分布直方圖,從直方圖中得到必要的信息進(jìn)行解題是關(guān)鍵.2、C【解析】
根據(jù)二次根式有意義和分式有意義的條件列出不等式,解不等式即可.【詳解】由題意得,x+3≥0,x≠0,解得x≥?3且x≠0,故選C.【點(diǎn)睛】本題考查分式有意義條件,二次根式有意義的條件,熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.3、C【解析】
連接AE,只要證明△ABC是等腰三角形,AC=AB即可解決問題.【詳解】解:如圖,連接AE,
∵AB是直徑,
∴∠AEB=90°,即AE⊥BC,
∵EB=EC,
∴AB=AC,
∴∠C=∠B,
∵∠BAC=50°,
∴∠C=(180°-50°)=65°,
故選:C.【點(diǎn)睛】本題考查了圓周角定理、等腰三角形的判定和性質(zhì)、線段的垂直平分線的性質(zhì)定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,靈活運(yùn)用所學(xué)知識(shí)解決問題.4、D【解析】
欲求S1+S1,只要求出過A、B兩點(diǎn)向x軸、y軸作垂線段與坐標(biāo)軸所形成的矩形的面積即可,而矩形面積為雙曲線y=的系數(shù)k,由此即可求出S1+S1.【詳解】∵點(diǎn)A、B是雙曲線y=上的點(diǎn),分別經(jīng)過A、B兩點(diǎn)向x軸、y軸作垂線段,
則根據(jù)反比例函數(shù)的圖象的性質(zhì)得兩個(gè)矩形的面積都等于|k|=4,
∴S1+S1=4+4-1×1=2.
故選D.5、C【解析】
連接OD,∵弧AB的半徑OA長(zhǎng)是6米,C是OA的中點(diǎn),∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故選C.6、C【解析】矩形,線段、菱形是軸對(duì)稱圖形,也是中心對(duì)稱圖形,符合題意;等腰三角形是軸對(duì)稱圖形,不是中心對(duì)稱圖形,不符合題意;平行四邊形不是軸對(duì)稱圖形,是中心對(duì)稱圖形,不符合題意.共3個(gè)既是軸對(duì)稱圖形又是中心對(duì)稱圖形.故選C.7、A【解析】
先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,則AF=4-=.再過G作GH∥BF,交BD于H,證明GH=GD,BH=GH,設(shè)DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【詳解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.過G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,設(shè)DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴=,即=,解得x=.故選A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),等腰三角形的性質(zhì),勾股定理,平行線分線段成比例定理,準(zhǔn)確作出輔助線是解題關(guān)鍵.8、B【解析】
由根與系數(shù)的關(guān)系逐項(xiàng)判斷各項(xiàng)方程的兩根之和即可.【詳解】在方程x2+2x-3=0中,兩根之和等于-2,故A不符合題意;在方程x2-2x-3=0中,兩根之和等于2,故B符合題意;在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,則該方程無實(shí)數(shù)根,故C不符合題意;在方程4x2-2x-3=0中,兩根之和等于-,故D不符合題意,故選B.【點(diǎn)睛】本題主要考查根與系數(shù)的關(guān)系,掌握一元二次方程的兩根之和等于-、兩根之積等于是解題的關(guān)鍵.9、A【解析】分析:詳解:∵當(dāng)a≤x≤a+2時(shí),函數(shù)有最大值1,∴1=x2-2x-2,解得:,即-1≤x≤3,∴a=-1或a+2=-1,∴a=-1或1,故選A.點(diǎn)睛:本題考查了求二次函數(shù)的最大(小)值的方法,注意:只有當(dāng)自變量x在整個(gè)取值范圍內(nèi),函數(shù)值y才在頂點(diǎn)處取最值,而當(dāng)自變量取值范圍只有一部分時(shí),必須結(jié)合二次函數(shù)的增減性及對(duì)稱軸判斷何處取最大值,何處取最小值.10、D【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進(jìn)而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域?yàn)閇0,3],開口向上的二次函數(shù)圖象;故選D.【點(diǎn)睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關(guān)鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
依據(jù)旋轉(zhuǎn)的性質(zhì),即可得到,再根據(jù),,即可得出,.最后在中,可得到.【詳解】依題可知,,,,∴,在中,,,,,.∴在中,.故答案為:.【點(diǎn)睛】本題考查了坐標(biāo)與圖形變化,等腰直角三角形的性質(zhì)以及含30°角的直角三角形的綜合運(yùn)用,圖形或點(diǎn)旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點(diǎn)的坐標(biāo).12、2【解析】
根據(jù)平方根的定義進(jìn)行計(jì)算即可.【詳解】.解:∵i2=﹣1,∴(1+i)?(1﹣i)=1﹣i2=2,∴(1+i)?(1﹣i)的平方根是±,故答案為±.【點(diǎn)睛】本題考查平方根以及實(shí)數(shù)的運(yùn)算,解題關(guān)鍵掌握平方根的定義.13、2.5秒.【解析】
把此正方體的點(diǎn)A所在的面展開,然后在平面內(nèi),利用勾股定理求點(diǎn)A和B點(diǎn)間的線段長(zhǎng),即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長(zhǎng)等于5,另一條直角邊長(zhǎng)等于2,利用勾股定理可求得.【詳解】解:因?yàn)榕佬新窂讲晃ㄒ唬史智闆r分別計(jì)算,進(jìn)行大、小比較,再從各個(gè)路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長(zhǎng)為5cm,用時(shí)最少:5÷2=2.5秒.【點(diǎn)睛】本題考查了勾股定理的拓展應(yīng)用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關(guān)鍵.14、或【解析】
由二次函數(shù)y=ax2+bx+c(a≠0)過點(diǎn)(-1,-2),(0,-2),可求得此拋物線的對(duì)稱軸,又由此拋物線過點(diǎn)(1,0),即可求得此拋物線與x軸的另一個(gè)交點(diǎn).繼而求得答案.【詳解】解:∵二次函數(shù)y=ax2+bx+c(a≠0)過點(diǎn)(-1,-2),(0,-2),∴此拋物線的對(duì)稱軸為:直線x=-,∵此拋物線過點(diǎn)(1,0),∴此拋物線與x軸的另一個(gè)交點(diǎn)為:(-2,0),∴ax2+bx+c=0的解為:x=-2或1.故答案為x=-2或1.【點(diǎn)睛】此題考查了拋物線與x軸的交點(diǎn)問題.此題難度適中,注意掌握二次函數(shù)的對(duì)稱性是解此題的關(guān)鍵.15、【解析】
要求AE的長(zhǎng),只要求出OA和OE的長(zhǎng)即可,要求OA的長(zhǎng)可以根據(jù)∠B=30°和OB的長(zhǎng)求得,OE可以根據(jù)∠OCE和OC的長(zhǎng)求得.【詳解】解:連接OD,如圖所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【點(diǎn)晴】切線的性質(zhì)16、【解析】
先提取公因式x,再對(duì)余下的多項(xiàng)式利用完全平方公式繼續(xù)分解.【詳解】xy1+1xy+x,=x(y1+1y+1),=x(y+1)1.故答案為:x(y+1)1.【點(diǎn)睛】本題考查了用提公因式法和公式法進(jìn)行因式分解,一個(gè)多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時(shí)因式分解要徹底,直到不能分解為止.17、60.【解析】
首先設(shè)半圓的圓心為O,連接OE,OA,由題意易得AC是線段OB的垂直平分線,即可求得∠AOC=∠ABC=60°,又由AE是切線,易證得Rt△AOE≌Rt△AOC,繼而求得∠AOE的度數(shù),則可求得答案.【詳解】設(shè)半圓的圓心為O,連接OE,OA,∵CD=2OC=2BC,∴OC=BC,∵∠ACB=90°,即AC⊥OB,∴OA=BA,∴∠AOC=∠ABC,∵∠BAC=30°,∴∠AOC=∠ABC=60°,∵AE是切線,∴∠AEO=90°,∴∠AEO=∠ACO=90°,∵在Rt△AOE和Rt△AOC中,,∴Rt△AOE≌Rt△AOC(HL),∴∠AOE=∠AOC=60°,∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,∴點(diǎn)E所對(duì)應(yīng)的量角器上的刻度數(shù)是60°,故答案為:60.【點(diǎn)睛】本題考查了切線的性質(zhì)、全等三角形的判定與性質(zhì)以及垂直平分線的性質(zhì),解題的關(guān)鍵是掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.三、解答題(共7小題,滿分69分)18、(1);(2)見解析.【解析】
(1)根據(jù)勾股定理即可得到結(jié)論;
(2)取格點(diǎn)S,T,得點(diǎn)R;取格點(diǎn)E,F(xiàn),得點(diǎn)G;連接GR交MN于點(diǎn)P即可得到結(jié)果.【詳解】(1);(2)取格點(diǎn)S,T,得點(diǎn)R;取格點(diǎn)E,F(xiàn),得點(diǎn)G;連接GR交MN于點(diǎn)P【點(diǎn)睛】本題考查了作圖-應(yīng)用與設(shè)計(jì)作圖,軸對(duì)稱-最短距離問題,正確的作出圖形是解題的關(guān)鍵.19、(1)a=7,b=7.5,c=4.2;(2)見解析.【解析】
(1)利用平均數(shù)的計(jì)算公式直接計(jì)算平均分即可;將乙的成績(jī)從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計(jì)算即可;(2)結(jié)合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點(diǎn)進(jìn)行分析.【詳解】(1)甲的平均成績(jī)a==7(環(huán)),∵乙射擊的成績(jī)從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績(jī)的中位數(shù)b==7.5(環(huán)),其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=×(16+9+1+3+4+9)=4.2;(2)從平均成績(jī)看甲、乙二人的成績(jī)相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績(jī)比乙的成績(jī)穩(wěn)定;綜合以上各因素,若選派一名隊(duì)員參加比賽的話,可選擇乙參賽,因?yàn)橐耀@得高分的可能更大.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和方差、平均數(shù)、中位數(shù)、眾數(shù)的綜合運(yùn)用.熟練掌握平均數(shù)的計(jì)算,理解方差的概念,能夠根據(jù)計(jì)算的數(shù)據(jù)進(jìn)行綜合分析.20、(1)2000;(2)2米【解析】
(1)設(shè)未知數(shù),根據(jù)題目中的的量關(guān)系列出方程;(2)可以通過平移,也可以通過面積法,列出方程【詳解】解:(1)設(shè)該項(xiàng)綠化工程原計(jì)劃每天完成x米2,根據(jù)題意得:﹣=4解得:x=2000,經(jīng)檢驗(yàn),x=2000是原方程的解;答:該綠化項(xiàng)目原計(jì)劃每天完成2000平方米;(2)設(shè)人行道的寬度為x米,根據(jù)題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.21、(1)x≥﹣1;(2)a是不等式的解.【解析】
(1)根據(jù)解一元一次不等式基本步驟:去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1可得.
(2)根據(jù)不等式的解的定義求解可得【詳解】解:(1)去分母得:2﹣x≤3(2+x),去括號(hào)得:2﹣x≤6+3x,移項(xiàng)、合并同類項(xiàng)得:﹣4x≤4,系數(shù)化為1得:x≥﹣1.(2)∵a>2,不等式的解集為x≥﹣1,而2>﹣1,∴a是不等式的解.【點(diǎn)睛】本題考查了解一元一次不等式,掌握解一元一次不等式的步驟是解題的關(guān)鍵22、(1)證明見解析;(1)證明見解析;(3)1.【解析】
(1)連接OB、OC、OD,根據(jù)圓心角與圓周角的性質(zhì)得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根據(jù)圓周角相等所對(duì)的弧相等得出結(jié)論.(1)過點(diǎn)O作OM⊥AD于點(diǎn)M,又一組角相等,再根據(jù)平行線的性質(zhì)得出對(duì)應(yīng)邊成比例,進(jìn)而得出結(jié)論;(3)延長(zhǎng)EO交AB于點(diǎn)H,連接CG,連接OA,BC為⊙O直徑,則∠G=∠CFE=∠FEG=90°,四邊形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根據(jù)鄰補(bǔ)角與余角的性質(zhì)可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根據(jù)直角三角形的三角函數(shù)計(jì)算出邊的長(zhǎng),根據(jù)“角角邊”證明出△HBO∽△ABC,根據(jù)相似三角形的性質(zhì)得出對(duì)應(yīng)邊成比例,進(jìn)而得出結(jié)論.【詳解】(1)如圖1,連接OB、OC、OD,∵∠BAD和∠BOD是所對(duì)的圓周角和圓心角,∠CAD和∠COD是所對(duì)的圓周角和圓心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴=;(1)如圖1,過點(diǎn)O作OM⊥AD于點(diǎn)M,∴∠OMA=90°,AM=DM,∵BE⊥AD于點(diǎn)E,CF⊥AD于點(diǎn)F,∴∠CFM=90°,∠MEB=90°,∴∠OMA=∠MEB,∠CFM=∠OMA,∴OM∥BE,OM∥CF,∴BE∥OM∥CF,∴,∵OB=OC,∴=1,∴FM=EM,∴AM﹣FM=DM﹣EM,∴DE=AF;(3)延長(zhǎng)EO交AB于點(diǎn)H,連接CG,連接OA.∵BC為⊙O直徑,∴∠BAC=90°,∠G=90
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流運(yùn)輸服務(wù)合同范本
- 幼兒園元宵具體活動(dòng)策劃方案五篇
- 服裝購銷合同書
- 車輛買賣合同協(xié)議
- 白灰購銷合同范本
- 無人機(jī)植保飛防作業(yè)服務(wù)合同
- 學(xué)校食堂租賃合同書
- 機(jī)場(chǎng)建設(shè)工程設(shè)計(jì)施工合同
- 羊皮購銷合同范本
- 互聯(lián)網(wǎng)數(shù)據(jù)中心合同
- 40篇短文搞定高中英語3500單詞
- 鋰電新能源項(xiàng)目融資計(jì)劃書
- 重大危險(xiǎn)源的風(fēng)險(xiǎn)評(píng)估模型
- 采購支出管理制度
- 混凝土試件臺(tái)賬
- 人機(jī)料法環(huán)測(cè)檢查表
- 中國數(shù)字貨運(yùn)發(fā)展報(bào)告
- 使用AVF血液透析患者的護(hù)理查房
- 《幼兒教師職業(yè)道德》教案
- 2021年高考山東卷化學(xué)試題(含答案解析)
評(píng)論
0/150
提交評(píng)論