版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
益陽市重點中學(xué)2024年數(shù)學(xué)高一下期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.實數(shù)數(shù)列為等比數(shù)列,則()A.-2 B.2 C. D.2.直線與圓相交于兩點,則弦長()A. B.C. D.3.若函數(shù)()有兩個不同的零點,則實數(shù)m的取值范圍是()A. B. C. D.4.已知是第二象限角,且,則的值為A. B. C. D.5.邊長為的正方形中,點是的中點,點是的中點,將分別沿折起,使兩點重合于,則直線與平面所成角的正弦值為()A. B. C. D.6.已知是定義在上的奇函數(shù),當(dāng)時,,那么不等式的解集是()A. B.C. D.7.在中,若為等邊三角形(兩點在兩側(cè)),則當(dāng)四邊形的面積最大時,()A. B. C. D.8.已知函數(shù)(其中為自然對數(shù)的底數(shù)),則的大致圖象為()A. B. C. D.9.已知數(shù)列的前項和滿足.若對任意正整數(shù)都有恒成立,則實數(shù)的取值范圍為()A. B. C. D.10.函數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象()A.向右平移 B.向右平移C.向左平移 D.向左平移二、填空題:本大題共6小題,每小題5分,共30分。11.5人排成一行合影,甲和乙不相鄰的排法有______種.(用數(shù)字回答)12.已知x,y滿足,則z=2x+y的最大值為_____.13.設(shè)函數(shù),則使得成立的的取值范圍是_______________.14.已知等比數(shù)列的首項為,公比為,其前項和為,下列命題中正確的是______.(寫出全部正確命題的序號)(1)等比數(shù)列單調(diào)遞增的充要條件是,且;(2)數(shù)列:,,,……,也是等比數(shù)列;(3);(4)點在函數(shù)(,為常數(shù),且,)的圖像上.15.已知數(shù)列,,且,則________.16.已知二面角為60°,動點P、Q分別在面、內(nèi),P到的距離為,Q到的距離為,則P、Q兩點之間距離的最小值為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知各項均為正數(shù)的等比數(shù)列滿足:,且,.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求數(shù)列的前n項和.18.銳角三角形的內(nèi)角A,B,C的對邊分別為a,b,c,且.(1)求A;(2)若,,求面積.19.已知直角梯形中,,,,,,過作,垂足為,分別為的中點,現(xiàn)將沿折疊,使得.(1)求證:(2)在線段上找一點,使得,并說明理由.20.已知為銳角三角形,內(nèi)角A,B,C的對邊分別為a,b,c,若.(1)求C;(2)若,且的面積為,求的周長.21.設(shè)等差數(shù)列的前n項和為,,.(1)求;(2)設(shè),求數(shù)列的前n項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由等比數(shù)列的性質(zhì)計算,注意項與項之間的關(guān)系即可.【詳解】由題意,,又與同號,∴.故選B.【點睛】本題考查等比數(shù)列的性質(zhì),解題時要注意等比數(shù)列中奇數(shù)項同號,偶數(shù)項同號.2、D【解析】試題分析:圓心到直線的距離為,所以弦長為.考點:直線與圓的位置關(guān)系.3、A【解析】
函數(shù)()有兩個不同的零點等價于函數(shù)在均有一個解,再解不等式即可.【詳解】解:因為,由函數(shù)()有兩個不同的零點,則函數(shù)在均有一個解,則,解得:,故選:A.【點睛】本題考查了分段函數(shù)的零點問題,重點考查了分式不等式的解法,屬中等題.4、B【解析】試題分析:因為是第二象限角,且,所以.考點:兩角和的正切公式.5、D【解析】
在正方形中連接,交于點,根據(jù)正方形的性質(zhì),在折疊圖中平面,得到,從而平面,面平面,則是在平面上的射影,找到直線與平面所所成的角.然后在直角三角中求解.【詳解】如圖所示:在正方形中連接,交于點,在折疊圖,連接,因為,所以平面,所以,又因為,所以平面,又因為平面,所以平面,則是在平面上的射影,所以即為所求.因為故選:D【點睛】本題主要考查了折疊圖問題,還考查了推理論證和空間想象的能力,屬于中檔題.6、B【解析】
根據(jù)奇函數(shù)的性質(zhì)求出的解析式,然后分類討論求出不等式的解集.【詳解】因為是定義在上的奇函數(shù),所以有,顯然是不等式的解集;當(dāng)時,;當(dāng)時,,綜上所述:不等式的解集是,故本題選B.【點睛】本題考查了利用奇函數(shù)性質(zhì)求解不等式解集問題,考查了分類思想,正確求出函數(shù)的解析式是解題的關(guān)鍵.7、A【解析】
求出三角形的面積,求出四邊形的面積,運用三角函數(shù)的恒等變換和正弦函數(shù)的值域,求出滿足條件的角的值即可.【詳解】設(shè),,,是正三角形,,由余弦定理得:,,時,四邊形的面積最大,此時.故選A.【點睛】本題考查余弦定理和三角形的面積公式,考查兩角的和差公式和正弦函數(shù)的值域,考查化簡運算能力,屬于中檔題.8、D【解析】令,,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又令,所以有兩個零點,因為,,所以,且當(dāng)時,,,當(dāng)時,,,當(dāng)時,,,選項C滿足條件.故選C.點睛:本題考查函數(shù)的解析式和圖象的關(guān)系、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;已知函數(shù)的解析式識別函數(shù)圖象是高考常見題型,往往從定義域、奇偶性(對稱性)、單調(diào)性、最值及特殊點的符號進行驗證,逐一驗證進行排除.9、C【解析】
先利用求出數(shù)列的通項公式,于是可求出,再利用參變量分離法得到,利用數(shù)列的單調(diào)性求出數(shù)列的最小項的值,可得出實數(shù)的取值范圍.【詳解】當(dāng)時,,即,得;當(dāng)時,由,得,兩式相減得,得,,所以,數(shù)列為等比數(shù)列,且首項為,公比為,.,由,得,所以,數(shù)列單調(diào)遞增,其最小項為,所以,,因此,實數(shù)的取值范圍是,故選C.【點睛】本題考查利用數(shù)列前項和求數(shù)列的通項,其關(guān)系式為,其次考查了數(shù)列不等式與參數(shù)的取值范圍問題,一般利用參變量分離法轉(zhuǎn)化為數(shù)列的最值問題來求解,考查化歸與轉(zhuǎn)化問題,屬于中等題.10、A【解析】
利用函數(shù)的圖像可得,從而可求出,再利用特殊點求出,進而求出三角函數(shù)的解析式,再利用三角函數(shù)圖像的變換即可求解.【詳解】由圖可知,所以,當(dāng)時,,由于,解得:,所以,要得到的圖像,則需要將的圖像向右平移.故選:A【點睛】本題考查了由圖像求解析式以及三角函數(shù)的圖像變換,需掌握三角函數(shù)圖像變換的原則,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、72【解析】
先對其中3個人進行全排列有種,再對甲和乙進行插空有種,利用乘法原理得到排法總數(shù)為.【詳解】先對其中3個人進行全排列有種,再對甲和乙進行插空有種,利用乘法原理得到排法總數(shù)為種,故答案為72【點睛】本題考查排列、組合計數(shù)原理的應(yīng)用,考查基本運算能力.12、1.【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大值即可.【詳解】解:,在坐標系中畫出圖象,三條線的交點分別是,,,在中滿足的最大值是點,代入得最大值等于1.故答案為:1.【點睛】本題是考查線性規(guī)劃問題,本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.13、【解析】
根據(jù)函數(shù)的表達式判斷出函數(shù)為偶函數(shù),判斷函數(shù)在的單調(diào)性為遞增,根據(jù)偶函數(shù)的對稱性可得,解絕對值不等式即可.【詳解】解:,定義域為,因為,所以函數(shù)為偶函數(shù).當(dāng)時,易知函數(shù)在為增函數(shù),根據(jù)偶函數(shù)的性質(zhì)可知:由可知,所以,解得:或.故答案為:.【點睛】本題考查偶函數(shù)的性質(zhì)和利用偶函數(shù)對稱性的特點解決問題,屬于基礎(chǔ)題.14、(3)【解析】
根據(jù)遞增數(shù)列的概念,以及等比數(shù)列的通項公式,充分條件與必要條件的概念,可判斷(1);令,為偶數(shù),可判斷(2);根據(jù)等比數(shù)列的性質(zhì),直接計算,可判斷(3);令,結(jié)合題意,可判斷(4),進而可得出結(jié)果.【詳解】(1)若等比數(shù)列單調(diào)遞增,則,所以或,故且不是等比數(shù)列單調(diào)遞增的充要條件;(1)錯;(2)若,為偶數(shù),則,,因等比數(shù)列中的項不為,故此時數(shù)列,,,……,不成等比數(shù)列;(2)錯;(3),所以(3)正確;(4)若,則,若點在函數(shù)的圖像上,則,因,,故不能對任意恒成立;故(4)錯.故答案為:(3)【點睛】本題主要考命題真假的判定,熟記等比數(shù)列的性質(zhì),以及等比數(shù)列的通項公式與求和公式即可,屬于常考題型.15、【解析】
由題意可得{}是以+1為首項,以2為公比的等比數(shù)列,再由已知求得首項,進一步求得即可.【詳解】在數(shù)列中,滿足得,則數(shù)列是以+1為首項,以公比為2的等比數(shù)列,得,由,則,得.由,得,故.故答案為:【點睛】本題考查了數(shù)列的遞推式,利用構(gòu)造等比數(shù)列方法求數(shù)列的通項公式,屬于中檔題.16、【解析】
如圖
分別作于A,于C,于B,于D,
連CQ,BD則,,
又
當(dāng)且僅當(dāng),即點A與點P重合時取最小值.
故答案選C.【點睛】三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(I)由得出,可得公比為2,再求出后可得;(II)由(I)得,則,可用錯位相減法求.【詳解】解:(Ⅰ)因為所以即.由因為所以,公比所以(Ⅱ)由(Ⅰ)知,,所以.所以因為所以所以【點睛】本題考查等比數(shù)列的通項公式,考查錯位相減法求和.?dāng)?shù)列求和根據(jù)數(shù)列的通項公式可采取不同的方法,一般有公式法、分組求和法、裂項相消法、錯位相減法、倒序相加法等.18、(1),(2)【解析】
(1)利用三角函數(shù)的和差公式化簡已知等式可得,結(jié)合為銳角可得的值.(2)由余弦定理可得,解得的值,根據(jù)三角形的面積公式即可求解.【詳解】(1)∵,∴∵∴可得:∵A,C為銳角,∴,可得:(2)∵∴由余弦定理,可得:,即,解得:或3,因為為銳角三角形,所以需滿足所以所以的面積為【點睛】本題主要考查了三角函數(shù)恒等變換及余弦定理,三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.19、(1)見解析(2)【解析】試題分析:(Ⅰ)由已知得:面面;(II)分析可知,點滿足時,面BDR⊥面BDC.
理由如下先計算再求得,
,再證面面面.試題解析:(Ⅰ)由已知得:面面
(II)分析可知,點滿足時,面BDR⊥面BDC.
理由如下:取中點,連接
容易計算在中∵可知,
∴在中,
又在中,為中點面,
∴面面.20、(1);(2).【解析】
(1)根據(jù)正弦定理可求,利用特殊角三角函數(shù)可求C;(2)由和的面積公式,可求,再根據(jù)余弦定理求得解出a,b即可求的周長.【詳解】(1)因為,所以由正弦定理得,又所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025湖南建筑安全員-C證考試(專職安全員)題庫附答案
- 貴州大學(xué)《鋼琴合奏》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州財經(jīng)大學(xué)《社會經(jīng)濟調(diào)查與寫作》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025吉林建筑安全員-C證考試(專職安全員)題庫附答案
- 貴陽信息科技學(xué)院《韓國語聽力》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《房屋建筑學(xué)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025山東省建筑安全員《C證》考試題庫及答案
- 廣州幼兒師范高等專科學(xué)?!都壒芾砼c主任工作實務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025江西建筑安全員《C證》考試題庫及答案
- 廣州衛(wèi)生職業(yè)技術(shù)學(xué)院《生態(tài)環(huán)境與人類發(fā)展》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年中考英語語法感嘆句100題精練
- 《海洋與人類》導(dǎo)學(xué)案
- 挑戰(zhàn)杯紅色賽道計劃書
- 重整投資保密承諾函(范本)
- 2024年民航安全知識培訓(xùn)考試題庫及答案(核心題)
- 抑郁癥病例分享
- MOOC 漢字文化解密-華中師范大學(xué) 中國大學(xué)慕課答案
- 問題解決過程PSP-完整版
- 電動葫蘆操作維護保養(yǎng)規(guī)程培訓(xùn)
- 淋巴回流障礙護理查房
- 初一英語作文范文30篇
評論
0/150
提交評論