2023-2024學年浙江省嘉興市七校高一下數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2023-2024學年浙江省嘉興市七校高一下數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2023-2024學年浙江省嘉興市七校高一下數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2023-2024學年浙江省嘉興市七校高一下數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2023-2024學年浙江省嘉興市七校高一下數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年浙江省嘉興市七校高一下數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步并不難,次日腳痛減一半,六朝才得至其關(guān),欲問每朝行里數(shù),請公仔細算相還”.其意思為:“有一個人走378里路,第1天健步行走,從第2天起,因腳痛每天走的路程為前一天的一半,走了6天后到達目的地,可求出此人每天走多少里路.”那么此人第5天走的路程為()A.48里 B.24里 C.12里 D.6里2.若直線過點,則此直線的傾斜角是()A. B. C. D.90。3.已知A(2,4)與B(3,3)關(guān)于直線l對稱,則直線l的方程為().A.x+y=0 B.x-y=0C.x-y+1=0 D.x+y-6=04.已知點,,若直線過原點,且、兩點到直線的距離相等,則直線的方程為()A.或 B.或C.或 D.或5.已知函數(shù)是連續(xù)的偶函數(shù),且時,是單調(diào)函數(shù),則滿足的所有之積為()A. B. C. D.6.已知數(shù)列{an}的前n項和Sn=3n(λ-n)-6,若數(shù)列{an}單調(diào)遞減,則λ的取值范圍是A.(-∞,2) B.(-∞,3) C.(-∞,4) D.(-∞,5)7.中,分別是內(nèi)角的對邊,且,,則等于()A. B. C. D.8.“()”是“函數(shù)是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.如圖2所示,程序框圖的輸出結(jié)果是()A.3 B.4 C.5 D.810.設(shè),,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)為等差數(shù)列,若,則_____.12.如圖,分別沿長方形紙片和正方形紙片的對角線剪開,拼成如圖所示的平行四邊形,且中間的四邊形為正方形.在平行四邊形內(nèi)隨機取一點,則此點取自陰影部分的概率是______________13.從甲、乙、丙等5名候選學生中選2名作為青年志愿者,則甲、乙、丙中有2個被選中的概率為________.14.如圖,在直角梯形中,//是線段上一動點,是線段上一動點,則的最大值為________.15.已知數(shù)列滿足則的最小值為__________.16.在中,內(nèi)角,,的對邊分別為,,.若,,成等比數(shù)列,且,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,.(1)計算及、;(2)設(shè),,,若,試求此時和滿足的函數(shù)關(guān)系式,并求的最小值.18.已知數(shù)列的前項和為.(1)求這個數(shù)列的通項公式;(2)若,求數(shù)列的前項和.19.2016年崇明區(qū)政府投資8千萬元啟動休閑體育新鄉(xiāng)村旅游項目.規(guī)劃從2017年起,在今后的若干年內(nèi),每年繼續(xù)投資2千萬元用于此項目.2016年該項目的凈收入為5百萬元,并預(yù)測在相當長的年份里,每年的凈收入均為上一年的基礎(chǔ)上增長.記2016年為第1年,為第1年至此后第年的累計利潤(注:含第年,累計利潤=累計凈收入﹣累計投入,單位:千萬元),且當為正值時,認為該項目贏利.(1)試求的表達式;(2)根據(jù)預(yù)測,該項目將從哪一年開始并持續(xù)贏利?請說明理由.20.如圖所示,在直三棱柱中,,,M、N分別為、的中點.求證:平面;求證:平面.21.已知不等式.(1)當時,求此不等式的解集;(2)若不等式的解集非空,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】記每天走的路程里數(shù)為{an},由題意知{an}是公比的等比數(shù)列,由S6=378,得=378,解得:a1=192,∴=12(里).故選C.2、A【解析】

根據(jù)兩點間斜率公式,可求得斜率.再由斜率與傾斜角關(guān)系即可求得直線的傾斜角.【詳解】直線過點則直線的斜率設(shè)傾斜角為,根據(jù)斜率與傾斜角關(guān)系可得由直線傾斜角可得故選:A【點睛】本題考查了直線斜率的求法,斜率與傾斜角關(guān)系,屬于基礎(chǔ)題.3、C【解析】試題分析:兩點關(guān)于直線對稱,則,點與的中點在直線上,,那么直線的斜率等于,中點坐標為,即中點坐標為,,整理得:,故選C.考點:求直線方程4、A【解析】

分為斜率存在和不存在兩種情況,根據(jù)點到直線的距離公式得到答案.【詳解】當斜率不存在時:直線過原點,驗證滿足條件.當斜率存在時:直線過原點,設(shè)直線為:即故答案選A【點睛】本題考查了點到直線的距離公式,忽略斜率不存在的情況是容易犯的錯誤.5、D【解析】

由y=f(x+2)為偶函數(shù)分析可得f(x)關(guān)于直線x=2對稱,進而分析可得函數(shù)f(x)在(2,+∞)和(﹣∞,2)上都是單調(diào)函數(shù),據(jù)此可得若f(x)=f(1),則有x=1或4﹣x=1,變形為二次方程,結(jié)合根與系數(shù)的關(guān)系分析可得滿足f(x)=f(1)的所有x之積,即可得答案.【詳解】根據(jù)題意,函數(shù)y=f(x+2)為偶函數(shù),則函數(shù)f(x)關(guān)于直線x=2對稱,又由當x>2時,函數(shù)y=f(x)是單調(diào)函數(shù),則其在(﹣∞,2)上也是單調(diào)函數(shù),若f(x)=f(1),則有x=1或4﹣x=1,當x=1時,變形可得x2+3x﹣3=0,有2個根,且兩根之積為﹣3,當4﹣x=1時,變形可得x2+x﹣13=0,有2個根,且兩根之積為﹣13,則滿足f(x)=f(1)的所有x之積為(﹣3)×(﹣13)=39;故選:D.【點睛】本題考查抽象函數(shù)的應(yīng)用,涉及函數(shù)的對稱性與單調(diào)性的綜合應(yīng)用,屬于綜合題.6、A【解析】

,,因為單調(diào)遞減,所以,所以,且,所以只需,,且,所以,故選A.7、D【解析】試題分析:由已知得,解得(舍)或,又因為,所以,由正弦定理得.考點:1、倍角公式;2、正弦定理.8、C【解析】若,則,函數(shù)為奇函數(shù),所以充分性成立;反之,若函數(shù)是奇函數(shù),則,即,因此必要性也是成立,所以“”是“函數(shù)是奇函數(shù)”充要條件,故選C.9、B【解析】

由框圖可知,①,滿足條件,則;②,滿足條件,則;③,滿足條件,則;④,不滿足條件,輸出;故選B10、B【解析】

根據(jù)與特殊點的比較可得因為,,,從而得到,得出答案.【詳解】解:因為,,,所以.故選:B【點睛】本題主要考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性與特殊點的問題,要熟記一些特殊點,如,,.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)等差數(shù)列的性質(zhì):在等差數(shù)列中若則即可【詳解】故答案為:【點睛】本題主要考查的等差數(shù)列的性質(zhì):若則,這一性質(zhì)是常考的知識點,屬于基礎(chǔ)題。12、【解析】

設(shè)正方形的邊長為,正方形的邊長為,分別求出陰影部分的面積和平行四邊形的面積,最后利用幾何概型公式求出概率.【詳解】設(shè)正方形的邊長為,正方形的邊長為,在長方形中,,故平行四邊形的面積為,陰影部分的面積為,所以在平行四邊形KLMN內(nèi)隨機取一點,則此點取自陰影部分的概率是.【點睛】本題考查了幾何概型概率的求法,求出平行四邊形的面積是解題的關(guān)鍵.13、【解析】因為從5名候選學生中任選2名學生的方法共有10種,而甲、乙、丙中有2個被選中的方法有3種,所以甲、乙、丙中有2個被選中的概率為.14、2【解析】

建立平面直角坐標系,得到相應(yīng)點的坐標及向量的坐標,把,利用向量的數(shù)量積轉(zhuǎn)化為的函數(shù),即可求解.【詳解】建立如圖所示的平面直角坐標系,因為,,所以,因為,,所以,因為,所以當時,取得最大值,最大值為.故答案為:.【點睛】本題主要考查了平面向量的線性運算,以及向量的數(shù)量積的運算的應(yīng)用,其中解答中建立平面直角坐標系,結(jié)合向量的線性運算和數(shù)量積的運算,得到的函數(shù)關(guān)系式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.15、【解析】

先利用累加法求出an=1+n2﹣n,所以,設(shè)f(n),由此能導(dǎo)出n=5或6時f(n)有最小值.借此能得到的最小值.【詳解】解:∵an+1﹣an=2n,∴當n≥2時,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且對n=1也適合,所以an=n2﹣n+1.從而設(shè)f(n),令f′(n),則f(n)在上是單調(diào)遞增,在上是遞減的,因為n∈N+,所以當n=5或6時f(n)有最小值.又因為,,所以的最小值為故答案為【點睛】本題考查了利用遞推公式求數(shù)列的通項公式,考查了累加法.還考查函數(shù)的思想,構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性.16、【解析】

A,B,C是三角形內(nèi)角,那么,代入等式中,進行化簡可得角A,C的關(guān)系,再由,,成等比數(shù)列,根據(jù)正弦定理,將邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,兩式相減可得關(guān)于的方程,解方程即得.【詳解】因為,所以,所以.因為,,成等比數(shù)列,所以,所以,則,整理得,解得.【點睛】本題考查正弦定理和等比數(shù)列運用,有一定的綜合性.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,;(2),.【解析】

(1)根據(jù)數(shù)量積和模的坐標運算計算;(2)由可得出,然后由二次函數(shù)性質(zhì)求得最小值.【詳解】(1)由題意及,同理,.(2)∵,∴,∴,即,又,∴時,.【點睛】本題考查向量的數(shù)量積與模的坐標運算,考查向量垂直與數(shù)量積的關(guān)系.掌握數(shù)量積的性質(zhì)是解題基礎(chǔ).其中.18、(1)(2)【解析】

(1)當且時,利用求得,經(jīng)驗證時也滿足所求式子,從而可得通項公式;(2)由(1)求得,利用錯位相減法求得結(jié)果.【詳解】(1)當且時,…①當時,,也滿足①式數(shù)列的通項公式為:(2)由(1)知:【點睛】本題考查利用求解數(shù)列通項公式、錯位相減法求解數(shù)列的前項和的問題,關(guān)鍵是能夠明確當數(shù)列通項為等差與等比乘積時,采用錯位相減法求和,屬于??碱}型.19、(1);(2).【解析】試題分析:(1)由題意知,第一年至此后第年的累計投入為(千萬元),第年至此后第年的累計凈收入為,利用等比數(shù)列數(shù)列的求和公式可得;(2)由,利用指數(shù)函數(shù)的單調(diào)性即可得出.試題解析:(1)由題意知,第1年至此后第n(n∈N*)年的累計投入為8+2(n﹣1)=2n+6(千萬元),第1年至此后第n(n∈N*)年的累計凈收入為+×+×+…+×=(千萬元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千萬元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣2],∴當n≤3時,f(n+1)﹣f(n)<1,故當n≤2時,f(n)遞減;當n≥2時,f(n+1)﹣f(n)>1,故當n≥2時,f(n)遞增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴該項目將從第8年開始并持續(xù)贏利.答:該項目將從2123年開始并持續(xù)贏利;方法二:設(shè)f(x)=﹣2x﹣7(x≥1),則f′(x)=,令f'(x)=1,得=≈=5,∴x≈2.從而當x∈[1,2)時,f'(x)<1,f(x)遞減;當x∈(2,+∞)時,f'(x)>1,f(x)遞增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴該項目將從第8年開始并持續(xù)贏利.答:該項目將從2123年開始并持續(xù)贏利.20、(1)見解析;(2)見解析.【解析】

(1)推導(dǎo)出,從而平面,進而,再由,,得是正方形,由此能證明平面.取的中點F,連BF、推導(dǎo)出四邊形BMNF是平行四邊形,從而,由此能證明平面.【詳解】證明:在直三棱柱中,側(cè)面底面ABC,且側(cè)面底面,,即,平面,平面,,,是正方形,,平面取的中點F

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論