2023-2024學年湖南省懷化市中方縣一中高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第1頁
2023-2024學年湖南省懷化市中方縣一中高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第2頁
2023-2024學年湖南省懷化市中方縣一中高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第3頁
2023-2024學年湖南省懷化市中方縣一中高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第4頁
2023-2024學年湖南省懷化市中方縣一中高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖南省懷化市中方縣一中高一數(shù)學第二學期期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,表示兩條不同的直線,表示平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則2.已知,函數(shù)的最小值是()A.4 B.5 C.8 D.63.若正方體的棱長為,點,在上運動,,四面體的體積為,則()A. B. C. D.4.已知,所在平面內一點P滿足,則()A. B. C. D.5.在中,A,B,C的對邊分別為a,b,c,,則的形狀一定是()A.直角三角形 B.等邊三角形 C.等腰三角形 D.等腰直角三角形6.在△ABC中,點D在邊BC上,若,則A.+ B.+ C.+ D.+7.等比數(shù)列中,,,則公比()A.1 B.2 C.3 D.48.若不等式的解集是,則的值為()A.12 B. C. D.109.已知一個扇形的圓心角為,半徑為1.則它的弧長為()A. B. C. D.10.兩數(shù)1,25的等差中項為()A.1 B.13 C.5 D.二、填空題:本大題共6小題,每小題5分,共30分。11.設數(shù)列的通項公式為,則_____.12.在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為.13.某學校高一年級舉行選課培訓活動,共有1024名學生、家長、老師參加,其中家長256人.學校按學生、家長、老師分層抽樣,從中抽取64人,進行某問卷調查,則抽到的家長有___人14.已知球的一個內接四面體中,,過球心,若該四面體的體積為,且,則球的表面積的最小值為_________.15.已知變量和線性相關,其一組觀測數(shù)據(jù)為,由最小二乘法求得回歸直線方程為.若已知,則______.16.已知向量為單位向量,向量,且,則向量的夾角為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.求經(jīng)過直線的交點,且滿足下列條件的直線方程:(1)與直線平行;(2)與直線垂直.18.在平面直角坐標系下,已知圓O:,直線l:()與圓O相交于A,B兩點,且.(1)求直線l的方程;(2)若點E,F(xiàn)分別是圓O與x軸的左、右兩個交點,點D滿足,點M是圓O上任意一點,點N在線段上,且存在常數(shù)使得,求點N到直線l距離的最小值.19.已知等比數(shù)列的前項和為,,,且.(1)求的通項公式;(2)是否存在正整數(shù),使得成立?若存在,求出的最小值;若不存在,請說明理由.20.某科研課題組通過一款手機APP軟件,調查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數(shù)分布表周跑量(km/周)人數(shù)100120130180220150603010(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:注:請先用鉛筆畫,確定后再用黑色水筆描黑(2)根據(jù)以上圖表數(shù)據(jù)計算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計該市跑步愛好者周跑量的分布特點(3)根據(jù)跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:周跑量小于20公里20公里到40公里不小于40公里類別休閑跑者核心跑者精英跑者裝備價格(單位:元)250040004500根據(jù)以上數(shù)據(jù),估計該市每位跑步愛好者購買裝備,平均需要花費多少元?21.若數(shù)列滿足:對于,都有(為常數(shù)),則稱數(shù)列是公差為的“隔項等差”數(shù)列.(Ⅰ)若,是公差為8的“隔項等差”數(shù)列,求的前項之和;(Ⅱ)設數(shù)列滿足:,對于,都有.①求證:數(shù)列為“隔項等差”數(shù)列,并求其通項公式;②設數(shù)列的前項和為,試研究:是否存在實數(shù),使得成等比數(shù)列()?若存在,請求出的值;若不存在,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)線面垂直的判定與性質、線面平行的判定與性質依次判斷各個選項可得結果.【詳解】選項:由線面垂直的性質定理可知正確;選項:由線面垂直判定定理知,需垂直于內兩條相交直線才能說明,錯誤;選項:若,則平行關系不成立,錯誤;選項:的位置關系可能是平行或異面,錯誤.故選:【點睛】本題考查空間中線面平行與垂直相關命題的辨析,關鍵是能夠熟練掌握空間中直線與平面位置關系的判定與性質定理.2、A【解析】試題分析:由題意可得,滿足運用基本不等式的條件——一正,二定,三相等,所以,故選A考點:利用基本不等式求最值;3、C【解析】

由題意得,到平面的距離不變=,且,即可得三棱錐的體積,利用等體積法得.【詳解】正方體的棱長為,點,在上運動,,如圖所示:點到平面的距離=,且,所以.所以三棱錐的體積=.利用等體積法得.故選:C.【點睛】本題考查了正方體的性質,等體積法求三棱錐的體積,屬于基礎題.4、D【解析】

由平面向量基本定理及單位向量可得點在的外角平分線上,且點在的外角平分線上,,,在中,由正弦定理得得解.【詳解】因為所以,因為方向為外角平分線方向,所以點在的外角平分線上,同理,點在的外角平分線上,,,在中,由正弦定理得,故選:.【點睛】本題考查了平面向量基本定理及單位向量,考查向量的應用,意在考查學生對這些知識的理解掌握水平.5、A【解析】

利用平方化倍角公式和邊化角公式化簡得到,結合三角形內角和定理化簡得到,即可確定的形狀.【詳解】化簡得即即是直角三角形故選A【點睛】本題考查了平方化倍角公式和正弦定理的邊化角公式,在化簡時,將邊化為角,使邊角混雜變統(tǒng)一,還有三角形內角和定理的運用,這一點往往容易忽略.6、C【解析】

根據(jù)向量減法和用表示,再根據(jù)向量加法用表示.【詳解】如圖:因為,所以,故選C.【點睛】本題考查向量幾何運算的加減法,結合圖形求解.7、B【解析】

將與用首項和公比表示出來,解方程組即可.【詳解】因為,且,故:,且,解得:,即,故選:B.【點睛】本題考查求解等比數(shù)列的基本量,屬基礎題.8、B【解析】

將不等式解集轉化為對應方程的根,然后根據(jù)韋達定理求出方程中的參數(shù),從而求出所求.【詳解】解:不等式的解集為,為方程的兩個根,根據(jù)韋達定理:解得,故選:B。【點睛】本題主要考查了一元二次不等式的應用,以及韋達定理的運用和一元二次不等式解集與所對應一元二次方程根的關系,屬于中檔題.9、C【解析】

直接利用扇形弧長公式求解即可得到結果.【詳解】由扇形弧長公式得:本題正確選項:【點睛】本題考查扇形弧長公式的應用,屬于基礎題.10、B【解析】

直接利用等差中項的公式求解.【詳解】由題得兩數(shù)1,25的等差中項為.故選:B【點睛】本題主要考查等差中項的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)數(shù)列的通項式求出前項和,再極限的思想即可解決此題?!驹斀狻繑?shù)列的通項公式為,則,則答案.故為:.【點睛】本題主要考查了給出數(shù)列的通項式求前項和以及極限。求數(shù)列的前常用的方法有錯位相減、分組求和、列項相消等。本題主要利用了分組求和的方法。12、【解析】

直接利用長度型幾何概型求解即可.【詳解】因為區(qū)間總長度為,符合條件的區(qū)間長度為,所以,由幾何概型概率公式可得,在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為,故答案為:.【點睛】解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與長度有關的幾何概型問題關鍵是計算問題的總長度以及事件的長度.13、16【解析】

利用分層抽樣的性質,直接計算,即可求得,得到答案.【詳解】由題意,可知共有1024名學生、家長、老師參加,其中家長256人,通過分層抽樣從中抽取64人,進行某問卷調查,則抽到的家長人數(shù)為人.故答案為16【點睛】本題主要考查了分層抽樣的應用,其中解答中熟記分層抽樣的概念和性質,準確計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.14、【解析】

求出面積的最大值,結合棱錐的體積可得到平面距離的最小值,進一步求得球的半徑的最小值得答案.【詳解】解:在中,由,且,

得,得.

當且僅當時,有最大值1.

過球心,且四面體的體積為1,

∴三棱錐的體積為.

則到平面的距離為.

此時的外接圓的半徑為,則球的半徑的最小值為,

∴球O的表面積的最小值為.

故答案為:.【點睛】本題考查多面體外接球表面積最值的求法,考查邏輯思維能力與推理運算能力,考查空間想象能力,是中檔題.15、355【解析】

根據(jù)回歸直線必過樣本點的中心,根據(jù)橫坐標結合回歸方程求出縱坐標即可得解.【詳解】由題:,回歸直線方程為,所以,.故答案為:355【點睛】此題考查根據(jù)回歸直線方程求樣本點的中心的縱坐標,關鍵在于掌握回歸直線必過樣本點的中心,根據(jù)平均數(shù)求解.16、【解析】因為,所以,所以,所以,則.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)先求出,再設所求的直線為,代入求出后可得所求的直線方程.(2)設所求的直線為,代入求出后可得所求的直線方程.【詳解】(1)由題意知:聯(lián)立方程組,解得交點,因為所求直線與直線平行,故設所求直線的方程為,代入,解得,即所求直線方程為(2)設與垂直的直線方程為因為過點,代入得,故所求直線方程為【點睛】本題考查直線方程的求法,注意根據(jù)平行或垂直關系合理假設直線方程,本題屬于容易題.18、(1);(2).【解析】

(1)等價于圓心O到直線l的距離,再由點到直線的距離公式求解即可;(2)先設點,再結合題意可得點N在以為圓心,半徑為的圓R上,再結合點到直線的距離公式求解即可.【詳解】解:(1)∵圓O:,圓心,半徑,∵直線l:()與圓O相交于A,B兩點,且,∴圓心O到直線l的距離,又,,解得,∴直線l的方程為;(2)∵點E,F(xiàn)分別是圓O與x軸的左、右兩個交點,,∴,,設,,則,,,,,即.又∵點N在線段上,即,共線,,,∵點M是圓O上任意一點,,∴將m,n代入上式,可得,即.則點N在以為圓心,半徑為的圓R上.圓心R到直線l:的距離,又,故點N到直線l:距離的最小值為1.【點睛】本題考查了點到直線的距離公式,重點考查了點的軌跡方程的求法,屬中檔題.19、(1);(2)存在,【解析】

(1)根據(jù)條件求解出公比,然后寫出等比數(shù)列通項;(2)先表示出,然后考慮的的最小值.【詳解】(1)因為,所以或,又,則,所以;(2)因為,則,當為偶數(shù)時有不符合;所以為奇數(shù),且,,所以且為奇數(shù),故.【點睛】本題考查等比數(shù)列通項及其前項和的應用,難度一般.對于公比為負數(shù)的等比數(shù)列,分析前項和所滿足的不等式時,注意分類討論,因此的奇偶會影響的正負.20、(1)見解析;(2)中位數(shù)為29.2,分布特點見解析;(3)3720元【解析】

(1)根據(jù)頻數(shù)和頻率之間的關系計算,即可得到答案;(2)根據(jù)頻率分布直方圖利用中位數(shù)兩邊頻率相等,列方程求出中位數(shù)的值,進而得出結論;(3)根據(jù)頻率分布直方圖求出休閑跑者,核心跑者,精英跑者分別人數(shù),進而求出平均值.【詳解】(1)補全該市1000名跑步愛好者周跑量的頻率分布直方圖,如下:(2)中位數(shù)的估計值:由,所以中位數(shù)位于區(qū)間中,設中位數(shù)為,則,解得,因為,所以估計該市跑步愛好者多數(shù)人的周跑量多于樣本的平均數(shù).(3)依題意可知,休閑跑者共有人,核心跑者人,精英跑者人,所以該市每位跑步愛好者購買裝備,平均需要元.【點睛】本題主要考查了平均數(shù)、中位數(shù)的求法,以及頻率分布直方圖的性質等相應知識的綜合應用,著重考查了化簡能力,推理計算能力,以及數(shù)形結合思想的應用,屬于基礎題.21、(Ⅰ)(Ⅱ)①當為偶數(shù)時,,當為奇數(shù)時,;②【解析】

試題分析:(Ⅰ)由新定義知:前項之和為兩等差數(shù)列之和,一個是首項為3,公差為8的等差數(shù)列前8項和,另一個是首

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論