版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
巴彥淖爾市重點中學(xué)2024屆數(shù)學(xué)高一下期末預(yù)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,、、分別是角、、的對邊,若,則的形狀是()A.等腰三角形 B.鈍角三角形 C.直角三角形 D.銳角三角形2.若樣本數(shù)據(jù),,…,的方差為2,則數(shù)據(jù),,…,的方差為()A.4 B.8 C.16 D.323.一支由學(xué)生組成的校樂團有男同學(xué)48人,女同學(xué)36人,若用分層抽樣的方法從該樂團的全體同學(xué)中抽取21人參加某項活動,則抽取到的男同學(xué)人數(shù)為()A.10 B.11 C.12 D.134.函數(shù)的定義域為()A. B. C. D.5.若,,則()A. B. C. D.6.數(shù)列{an}中a1=﹣2,an+1=1,則a2019的值為()A.﹣2 B. C. D.7.在一個平面上,機器人到與點的距離為8的地方繞點順時針而行,它在行進過程中到經(jīng)過點與的直線的最近距離為()A. B. C. D.8.函數(shù),,的部分圖象如圖所示,則函數(shù)表達式為()A. B.C. D.9.若直線xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.10.計算:的結(jié)果為()A.1 B.2 C.-1 D.-2二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角A,B,C的對邊分別為,若,則此三角形的最大內(nèi)角的度數(shù)等于________.12.某公司調(diào)查了商品的廣告投入費用(萬元)與銷售利潤(萬元)的統(tǒng)計數(shù)據(jù),如下表:廣告費用(萬元)銷售利潤(萬元)由表中的數(shù)據(jù)得線性回歸方程為,則當時,銷售利潤的估值為___.(其中:)13.已知扇形的圓心角,扇形的面積為,則該扇形的弧長的值是______.14.數(shù)列是等比數(shù)列,,,則的值是________.15.已知直線與直線互相平行,則______.16.(理)已知函數(shù),若對恒成立,則的取值范圍為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.為了加強“平安校園”建設(shè),有效遏制涉校案件的發(fā)生,保障師生安全,某校決定在學(xué)校門口利用一側(cè)原有墻體,建造一間墻高為3米,底面為24平方米,且背面靠墻的長方體形狀的校園警務(wù)室.由于此警務(wù)室的后背靠墻,無需建造費用,甲工程隊給出的報價為:屋子前面新建墻體的報價為每平方米400元,左右兩面新建墻體報價為每平方米300元,屋頂和地面以及其他報價共計14400元.設(shè)屋子的左右兩面墻的長度均為x米(3≤x≤6).(Ⅰ)當左右兩面墻的長度為多少時,甲工程隊報價最低?并求出最低報價.(Ⅱ)現(xiàn)有乙工程隊也要參與此警務(wù)室的建造競標,其給出的整體報價為1800a(1+x)x元(a>0),若無論左右兩面墻的長度為多少米,乙工程隊都能競標成功,試求a18.已知,,(1)若,求;(2)求的最大值,并求出對應(yīng)的x的值.19.已知函數(shù).(1)求函數(shù)圖象的對稱軸方程;(2)若對于任意的,恒成立,求實數(shù)的取值范圍.20.已知函數(shù),其中.(1)當時,求的最小值;(2)設(shè)函數(shù)恰有兩個零點,且,求的取值范圍.21.已知函數(shù)的最小正周期為.將函數(shù)的圖象上各點的橫坐標變?yōu)樵瓉淼谋?,縱坐標變?yōu)樵瓉淼谋叮玫胶瘮?shù)的圖象.(1)求的值及函數(shù)的解析式;(2)求的單調(diào)遞增區(qū)間及對稱中心
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
由正弦定理和,可得,在利用三角恒等變換的公式,化簡得,即可求解.【詳解】在中,由正弦定理,由,可得,又由,則,即,即,解得,所以為等腰三角形,故選A.【點睛】本題主要考查了正弦定理的應(yīng)用,以及三角形形狀的判定,其中解答中熟練應(yīng)用正弦定理的邊角互化,合理利用三角恒等變換的公式化簡是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、B【解析】
根據(jù),則即可求解.【詳解】因為樣本數(shù)據(jù),,…,的方差為2,所以,,…,的方差為,故選B.【點睛】本題主要考查了方差的概念及求法,屬于容易題.3、C【解析】
先由男女生總數(shù)以及抽取的人數(shù)確定抽樣比,由男生總?cè)藬?shù)乘以抽樣比即可得出結(jié)果.【詳解】用分層抽樣的方法從校樂團中抽取人,所得抽樣比為,因此抽取到的男同學(xué)人數(shù)為人.故選C【點睛】本題主要考查分層抽樣,熟記概念即可,屬于常考題型.4、A【解析】
根據(jù)對數(shù)函數(shù)的定義域直接求解即可.【詳解】由題知函數(shù),所以,所以函數(shù)的定義域是.故選:A.【點睛】本題考查了對數(shù)函數(shù)的定義域的求解,屬于基礎(chǔ)題.5、D【解析】
由于,,,,利用“平方關(guān)系”可得,,變形即可得出.【詳解】∵,,∴,∴.∵,∴,∵,∴.∴.故選D.【點睛】本題考查了兩角和的余弦公式、三角函數(shù)同角基本關(guān)系式、拆分角等基礎(chǔ)知識與基本技能方法,屬于中檔題.6、B【解析】
根據(jù)遞推公式,算出即可觀察出數(shù)列的周期為3,根據(jù)周期即可得結(jié)果.【詳解】解:由已知得,,,
,…,,
所以數(shù)列是以3為周期的周期數(shù)列,故,
故選:B.【點睛】本題考查遞推數(shù)列的直接應(yīng)用,難度較易.7、A【解析】
由題意知機器人的運行軌跡為圓,利用圓心到直線的距離求出最近距離.【詳解】解:機器人到與點距離為8的地方繞點順時針而行,在行進過程中保持與點的距離不變,機器人的運行軌跡方程為,如圖所示;與,直線的方程為,即為,則圓心到直線的距離為,最近距離為.故選.【點睛】本題考查了直線和圓的位置關(guān)系,以及點到直線的距離公式,屬于基礎(chǔ)題.8、A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.9、C【解析】
將1,2代入直線方程得到1a+2【詳解】將1,2代入直線方程得到1a+b=(a+b)(當a=2故答案選C【點睛】本題考查了直線方程,均值不等式,1的代換是解題的關(guān)鍵.10、B【解析】
利用恒等變換公式化簡得的答案.【詳解】故答案選B【點睛】本題考查了三角恒等變換,意在考查學(xué)生的計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)大角對大邊,利用余弦定理直接計算得到答案.【詳解】在中,角A,B,C的對邊分別為,若不妨設(shè)三邊分別為:3,5,7根據(jù)大角對大邊:角C最大故答案為【點睛】本題考查了余弦定理,屬于簡單題.12、12.2【解析】
先求出,的平均數(shù),再由題中所給公式計算出和,進而得出線性回歸方程,將代入,即可求出結(jié)果.【詳解】由題中數(shù)據(jù)可得:,,所以,所以,故回歸直線方程為,所以當時,【點睛】本題主要考查線性回歸方程,需要考生掌握住最小二乘法求與,屬于基礎(chǔ)題型.13、【解析】
先結(jié)合求出,再由求解即可【詳解】由,則故答案為:【點睛】本題考查扇形的弧長和面積公式的使用,屬于基礎(chǔ)題14、【解析】
由題得計算得解.【詳解】由題得,所以.因為等比數(shù)列同號,所以.故答案為:【點睛】本題主要考查等比數(shù)列的性質(zhì)和等比中項的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.15、【解析】
由兩直線平行得,,解出值.【詳解】由直線與直線互相平行,得,解得.故答案為:.【點睛】本題考查兩直線平行的性質(zhì),兩直線平行,一次項系數(shù)之比相等,但不等于常數(shù)項之比,屬于基礎(chǔ)題.16、【解析】試題分析:函數(shù)要使對恒成立,只要小于或等于的最小值即可,的最小值是0,即只需滿足,解得.考點:恒成立問題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)4米時,28800元;(Ⅱ)0<a<12.25.【解析】
(Ⅰ)設(shè)甲工程隊的總造價為y元,先求出函數(shù)的解析式,再利用基本不等式求函數(shù)的最值得解;(Ⅱ)由題意可得,1800(x+16x)+14400>從而(x+4)2【詳解】(Ⅰ)設(shè)甲工程隊的總造價為y元,則y=3(300×2x+400×1800(x+16當且僅當x=16x,即即當左右兩側(cè)墻的長度為4米時,甲工程隊的報價最低為28800元.(Ⅱ)由題意可得,1800(x+16x)+14400>即(x+4)2x>令x+1=t,(x+4)又y=t+9t+6在t∈[4,7]所以0<a<12.25.【點睛】本題主要考查基本不等式的應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.18、(Ⅰ)(II)1,此時【解析】
(Ⅰ)根據(jù)平面向量的坐標運算,利用平行公式求出tanx的值;(Ⅱ)利用平面向量的坐標運算,利用模長公式和三角函數(shù)求出最大值.【詳解】解:(Ⅰ)計算-=(3,4),由∥(-)得4cosx-3sinx=0,∴tanx==;(Ⅱ)+=(cosx+1,sinx),∴=(cosx+1)1+sin1x=1+1cosx,|+|=,當cosx=1,即x=1kπ,k∈Z時,|+|取得最大值為1.【點睛】本題考查了平面向量的坐標運算與數(shù)量積運算問題,是基礎(chǔ)題.19、(1)(2)【解析】
(1)通過三角恒等變形,化簡為的形式,方便我們?nèi)パ芯颗c其相關(guān)的任何問題;(2)恒成立,可轉(zhuǎn)化,我們只需要求出最大值從而完成本題.【詳解】(1)令得,所以的對稱軸為(2)當時,,,因為,即恒成立故,解得【點睛】在研究三角函數(shù)相關(guān)的性質(zhì)(值域、對稱中心、對稱軸、單調(diào)性……)我們都是將其化為(或者余弦、正切相對應(yīng))的形式,利用整體思想,我們能比較方便的去研究他們相關(guān)性質(zhì).20、(1);(2)【解析】
(1)當時,利用指數(shù)函數(shù)和二次函數(shù)的圖象與性質(zhì),得到函數(shù)的單調(diào)性,即可求得函數(shù)的最小值;(2)分段討論討論函數(shù)在相應(yīng)的區(qū)間內(nèi)的根的個數(shù),函數(shù)在時,至多有一個零點,函數(shù)在時,可能僅有一個零點,可能有兩個零點,分別求出的取值范圍,可得解.【詳解】(1)當時,函數(shù),當時,,由指數(shù)函數(shù)的性質(zhì),可得函數(shù)在上為增函數(shù),且;當時,,由二次函數(shù)的性質(zhì),可得函數(shù)在上為減函數(shù),在上為增函數(shù),又由函數(shù),當時,函數(shù)取得最小值為;故當時,最小值為.(2)因為函數(shù)恰有兩個零點,所以(?。┊敃r,函數(shù)有一個零點,令得,因為時,,所以時,函數(shù)有一個零點,設(shè)零點為且,此時需函數(shù)在時也恰有一個零點,令,即,得,令,設(shè),,因為,所以,,,當時,,所以,即,所以在上單調(diào)遞增;當時,,所以,即,所以在上單調(diào)遞減;而當時,,又時,,所以要使在時恰有一個零點,則需,要使函數(shù)恰有兩個零點,且,設(shè)在時的零點為,則需,而當時,,所以當時,函數(shù)恰有兩個零點,并且滿足;(ⅱ)若當時,函數(shù)沒有零點,函數(shù)在恰有兩個零點,且滿足,也符合題意,而由(?。┛傻?,要使當時,函數(shù)沒有零點,則,要使函數(shù)在恰有兩個零點,則,但不能滿足,所以沒有的范圍滿足當時,函數(shù)沒有零點,函數(shù)在恰有兩個零點,且滿足,綜上可得:實數(shù)的取值范圍為.故得解.【點睛】本題主要考查了指數(shù)函數(shù)與二次函數(shù)的圖象與性質(zhì)的應(yīng)用,以及函數(shù)與方程,函數(shù)的零點問題的綜合應(yīng)用,屬于難度題,關(guān)鍵在于分析分段函數(shù)在相應(yīng)的區(qū)間內(nèi)的單調(diào)性,以及其圖像趨勢,可運用數(shù)形結(jié)合方便求解,注意在討論二次函數(shù)的根的情況時的定義域?qū)ζ涞挠绊懀?
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025湖南建筑安全員-C證考試(專職安全員)題庫附答案
- 貴州大學(xué)《鋼琴合奏》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州財經(jīng)大學(xué)《社會經(jīng)濟調(diào)查與寫作》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025吉林建筑安全員-C證考試(專職安全員)題庫附答案
- 貴陽信息科技學(xué)院《韓國語聽力》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《房屋建筑學(xué)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025山東省建筑安全員《C證》考試題庫及答案
- 廣州幼兒師范高等專科學(xué)?!都壒芾砼c主任工作實務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025江西建筑安全員《C證》考試題庫及答案
- 廣州衛(wèi)生職業(yè)技術(shù)學(xué)院《生態(tài)環(huán)境與人類發(fā)展》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年國務(wù)院發(fā)展研究中心信息中心招聘應(yīng)屆畢業(yè)生1人高頻重點提升(共500題)附帶答案詳解
- 2024年公安機關(guān)理論考試題庫500道及參考答案
- 特殊情況施工的技術(shù)措施
- 大學(xué)物理(二)知到智慧樹章節(jié)測試課后答案2024年秋湖南大學(xué)
- 銀行運營集中規(guī)劃
- 2024年托管裝修責(zé)任協(xié)議
- 國家自然科學(xué)基金申請書模板三篇
- (醫(yī)學(xué)課件)護理人文關(guān)懷
- 數(shù)據(jù)采集服務(wù)委托合同
- DB11T 1833-2021 建筑工程施工安全操作規(guī)程
- 信息檢索課件 第2章 文獻檢索方法(1)-2
評論
0/150
提交評論