版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年浙江省寧波市鎮(zhèn)海中學(xué)高三壓軸卷數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓(a>b>0)與雙曲線(a>0,b>0)的焦點(diǎn)相同,則雙曲線漸近線方程為()A. B.C. D.2.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件3.的展開式中的系數(shù)是-10,則實(shí)數(shù)()A.2 B.1 C.-1 D.-24.已知集合,集合,若,則()A. B. C. D.5.已知隨機(jī)變量服從正態(tài)分布,且,則()A. B. C. D.6.已知拋物線上的點(diǎn)到其焦點(diǎn)的距離比點(diǎn)到軸的距離大,則拋物線的標(biāo)準(zhǔn)方程為()A. B. C. D.7.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.8.已知函數(shù),則在上不單調(diào)的一個充分不必要條件可以是()A. B. C.或 D.9.已知,,分別是三個內(nèi)角,,的對邊,,則()A. B. C. D.10.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件11.已知平面向量滿足與的夾角為,且,則實(shí)數(shù)的值為()A. B. C. D.12.已知雙曲線C:=1(a>0,b>0)的右焦點(diǎn)為F,過原點(diǎn)O作斜率為的直線交C的右支于點(diǎn)A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+1二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,曲線上任意一點(diǎn)到直線的距離的最小值為________.14.已知,則_____15.已知函數(shù)函數(shù),則不等式的解集為____.16.己知雙曲線的左、右焦點(diǎn)分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(2)若,對,恒有成立,求實(shí)數(shù)的最小值.18.(12分)設(shè)都是正數(shù),且,.求證:.19.(12分)在最新公布的湖南新高考方案中,“”模式要求學(xué)生在語數(shù)外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學(xué)、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉(zhuǎn)換后計(jì)入高考總分.相應(yīng)地,高校在招生時可對特定專業(yè)設(shè)置具體的選修科目要求.雙超中學(xué)高一年級有學(xué)生1200人,現(xiàn)從中隨機(jī)抽取40人進(jìn)行選科情況調(diào)查,用數(shù)字1~6分別依次代表歷史、物理、化學(xué)、生物、地理、政治6科,得到如下的統(tǒng)計(jì)表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學(xué)規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當(dāng)且僅當(dāng)一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的1位老師只教1個班).已知雙超中學(xué)高一年級現(xiàn)有化學(xué)、生物科目教師每科各8人,用樣本估計(jì)總體,則化學(xué)、生物兩科的教師人數(shù)是否需要調(diào)整?如果需要調(diào)整,各需增加或減少多少人?(2)請創(chuàng)建列聯(lián)表,運(yùn)用獨(dú)立性檢驗(yàn)的知識進(jìn)行分析,探究是否有的把握判斷學(xué)生“選擇化學(xué)科目”與“選擇物理科目”有關(guān).附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現(xiàn)從雙超中學(xué)高一新生中隨機(jī)抽取3人,設(shè)具備高校專業(yè)報名資格的人數(shù)為,用樣本的頻率估計(jì)概率,求的分布列與期望.20.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.21.(12分)如圖,在四棱錐中,底面是矩形,是的中點(diǎn),平面,且,.()求與平面所成角的正弦.()求二面角的余弦值.22.(10分)已知拋物線,焦點(diǎn)為,直線交拋物線于兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),如圖所示,當(dāng)直線經(jīng)過焦點(diǎn)時,點(diǎn)恰好是的中點(diǎn),且.(1)求拋物線的方程;(2)點(diǎn)是原點(diǎn),設(shè)直線的斜率分別是,當(dāng)直線的縱截距為1時,有數(shù)列滿足,設(shè)數(shù)列的前n項(xiàng)和為,已知存在正整數(shù)使得,求m的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由題意可得,即,代入雙曲線的漸近線方程可得答案.【詳解】依題意橢圓與雙曲線即的焦點(diǎn)相同,可得:,即,∴,可得,雙曲線的漸近線方程為:,故選:A.【點(diǎn)睛】本題考查橢圓和雙曲線的方程和性質(zhì),考查漸近線方程的求法,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.2、C【解析】
根據(jù)對數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點(diǎn)睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對數(shù)不等式的解法,是基礎(chǔ)題.3、C【解析】
利用通項(xiàng)公式找到的系數(shù),令其等于-10即可.【詳解】二項(xiàng)式展開式的通項(xiàng)為,令,得,則,所以,解得.故選:C【點(diǎn)睛】本題考查求二項(xiàng)展開式中特定項(xiàng)的系數(shù),考查學(xué)生的運(yùn)算求解能力,是一道容易題.4、A【解析】
根據(jù)或,驗(yàn)證交集后求得的值.【詳解】因?yàn)椋曰?當(dāng)時,,不符合題意,當(dāng)時,.故選A.【點(diǎn)睛】本小題主要考查集合的交集概念及運(yùn)算,屬于基礎(chǔ)題.5、C【解析】
根據(jù)在關(guān)于對稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機(jī)變量服從正態(tài)分布,則.6、B【解析】
由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點(diǎn)M到其焦點(diǎn)F的距離比點(diǎn)M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,,所以拋物線的標(biāo)準(zhǔn)方程為:y2=2x.故選B.【點(diǎn)睛】本題考查了拋物線的簡單性質(zhì)的應(yīng)用,拋物線方程的求法,屬于基礎(chǔ)題.7、D【解析】
先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點(diǎn)睛】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡單題目.8、D【解析】
先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結(jié)論.【詳解】,若在上不單調(diào),令,則函數(shù)對稱軸方程為在區(qū)間上有零點(diǎn)(可以用二分法求得).當(dāng)時,顯然不成立;當(dāng)時,只需或,解得或.故選:D.【點(diǎn)睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點(diǎn)的求法,屬于中檔題.9、C【解析】
原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因?yàn)?,所以代入上式化簡?由于,所以.又,故.故選:C.【點(diǎn)睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,屬于中檔題.10、A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點(diǎn):充分條件、必要條件.11、D【解析】
由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.12、B【解析】
以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點(diǎn),則,整理計(jì)算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點(diǎn)睛】本題考查雙曲線離心率的求解,考查學(xué)生的計(jì)算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
解法一:曲線上任取一點(diǎn),利用基本不等式可求出該點(diǎn)到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點(diǎn)坐標(biāo),再計(jì)算出切點(diǎn)到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點(diǎn),該點(diǎn)到直線的距離為,當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立,因此,曲線上任意一點(diǎn)到直線距離的最小值為;解法二(導(dǎo)數(shù)法):曲線的函數(shù)解析式為,則,設(shè)過曲線上任意一點(diǎn)的切線與直線平行,則,解得,當(dāng)時,到直線的距離;當(dāng)時,到直線的距離.所以曲線上任意一點(diǎn)到直線的距離的最小值為.故答案為:.【點(diǎn)睛】本題考查曲線上一點(diǎn)到直線距離最小值的計(jì)算,可轉(zhuǎn)化為利用切線與直線平行來找出切點(diǎn),轉(zhuǎn)化為切點(diǎn)到直線的距離,也可以設(shè)曲線上的動點(diǎn)坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問題和解決問題的能力,屬于中等題.14、【解析】
化簡得,利用周期即可求出答案.【詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.15、【解析】,,所以,所以的解集為。點(diǎn)睛:本題考查絕對值不等式。本題先對絕對值函數(shù)進(jìn)行分段處理,再得到的解析式,求得的分段函數(shù)解析式,再解不等式即可。絕對值函數(shù)一般都去絕對值轉(zhuǎn)化為分段函數(shù)處理。16、【解析】
由,則,所以點(diǎn),因?yàn)?,可得,點(diǎn)坐標(biāo)化簡為,代入雙曲線的方程求解.【詳解】設(shè),則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點(diǎn)睛】本題主要考查了直線與雙曲線的位置關(guān)系,及三角恒等變換,還考查了運(yùn)算求解的能力和數(shù)形結(jié)合的思想,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設(shè),利用求二階導(dǎo)數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因?yàn)樵谏蠁握{(diào)遞增,所以在恒成立,即在恒成立,當(dāng)時,上式成立,當(dāng),有,需,而,,,,故綜上,實(shí)數(shù)的取值范圍是(2)設(shè),,則,令,,在單調(diào)遞增,也就是在單調(diào)遞增,所以.當(dāng)即時,,不符合;當(dāng)即時,,符合當(dāng)即時,根據(jù)零點(diǎn)存在定理,,使,有時,,在單調(diào)遞減,時,,在單調(diào)遞增,成立,故只需即可,有,得,符合綜上得,,實(shí)數(shù)的最小值為【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于難題.18、證明見解析【解析】
利用比較法進(jìn)行證明:把代數(shù)式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因?yàn)?,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點(diǎn)睛】本題考查利用比較法證明不等式;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;把差變形為因式乘積的形式是證明本題的關(guān)鍵;屬于中檔題。19、(1)不需調(diào)整(2)列聯(lián)表見解析;有的把握判斷學(xué)生“選擇化學(xué)科目”與“選擇物理科目”有關(guān)(3)詳見解析【解析】
(1)可估計(jì)高一年級選修相應(yīng)科目的人數(shù)分別為120,2,推理得對應(yīng)開設(shè)選修班的數(shù)目分別為15,1.推理知生物科目需要減少4名教師,化學(xué)科目不需要調(diào)整.(2)根據(jù)列聯(lián)表計(jì)算觀測值,根據(jù)臨界值表可得結(jié)論.(3)經(jīng)統(tǒng)計(jì),樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)為12,頻率為.用頻率估計(jì)概率,則,根據(jù)二項(xiàng)分布概率公式可得分布列和數(shù)學(xué)期望.【詳解】(1)經(jīng)統(tǒng)計(jì)可知,樣本40人中,選修化學(xué)、生物的人數(shù)分別為24,11,則可估計(jì)高一年級選修相應(yīng)科目的人數(shù)分別為120,2.根據(jù)每個選修班最多編排50人,且盡量滿額編班,得對應(yīng)開設(shè)選修班的數(shù)目分別為15,1.現(xiàn)有化學(xué)、生物科目教師每科各8人,根據(jù)每位教師執(zhí)教2個選修班,當(dāng)且僅當(dāng)一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的一位教師執(zhí)教一個班的條件,知生物科目需要減少4名教師,化學(xué)科目不需要調(diào)整.(2)根據(jù)表格中的數(shù)據(jù)進(jìn)行統(tǒng)計(jì)后,制作列聯(lián)表如下:選物理不選物理合計(jì)選化學(xué)19524不選化學(xué)61016合計(jì)251540則,有的把握判斷學(xué)生”選擇化學(xué)科目”與“選擇物理科目”有關(guān).(3)經(jīng)統(tǒng)計(jì),樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)為12,頻率為.用頻率估計(jì)概率,則,分布列如下:01230.3430.4410.1890.021數(shù)學(xué)期望為.【點(diǎn)睛】本題主要考查了離散型隨機(jī)變量的期望與方差,考查獨(dú)立性檢驗(yàn),意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.20、(1);(2)【解析】
(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項(xiàng)和公式,即可求解.【詳解】(1)因?yàn)椋?,又所以?shù)列為等比數(shù)列,且首項(xiàng)為,公比
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 虛擬現(xiàn)實(shí)廣告的跨媒體傳播-洞察分析
- 纖維素生物質(zhì)化學(xué)轉(zhuǎn)化-洞察分析
- 初二期末綜合評價總結(jié)(6篇)
- 天然氣合成甲醇-洞察分析
- 元宇宙對時裝設(shè)計(jì)影響分析-洞察分析
- 匠心筑夢技能報國三分鐘演講稿范文(10篇)
- 辦公自動化技術(shù)的推廣與應(yīng)用研究報告
- 辦公空間走向可持續(xù)的展館模式
- 以科技為驅(qū)動的家庭財(cái)富增長路徑探索
- 煤礦爆破員勞動合同三篇
- 蘇教版小學(xué)三年級科學(xué)上冊單元測試題附答案(全冊)
- 口腔門診醫(yī)院感染管理標(biāo)準(zhǔn)WST842-2024
- 2024年中考語文(北京卷)真題詳細(xì)解讀及評析
- 2024年情趣用品行業(yè)商業(yè)發(fā)展計(jì)劃書
- 重慶市江津區(qū)2023-2024學(xué)年下學(xué)期七年級期末檢測數(shù)學(xué)試卷 (A)
- 2024年銀行考試-興業(yè)銀行筆試參考題庫含答案
- DL-T 572-2021電力變壓器運(yùn)行規(guī)程-PDF解密
- 內(nèi)科學(xué)(廣東藥科大學(xué))智慧樹知到期末考試答案2024年
- 塑造安全文化品牌 構(gòu)建平安和諧礦區(qū)
- 2024年3月河北定向選調(diào)生面試及參考答案全套
- (高清版)TDT 1055-2019 第三次全國國土調(diào)查技術(shù)規(guī)程
評論
0/150
提交評論