![2023-2024學(xué)年福建省漳平市第一中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view2/M00/19/08/wKhkFmZhT22AAC69AAFonMJj7d4956.jpg)
![2023-2024學(xué)年福建省漳平市第一中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view2/M00/19/08/wKhkFmZhT22AAC69AAFonMJj7d49562.jpg)
![2023-2024學(xué)年福建省漳平市第一中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view2/M00/19/08/wKhkFmZhT22AAC69AAFonMJj7d49563.jpg)
![2023-2024學(xué)年福建省漳平市第一中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view2/M00/19/08/wKhkFmZhT22AAC69AAFonMJj7d49564.jpg)
![2023-2024學(xué)年福建省漳平市第一中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view2/M00/19/08/wKhkFmZhT22AAC69AAFonMJj7d49565.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年福建省漳平市第一中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某幾何體的三視圖如圖所示,它的體積為()A.12π B.45π C.57π D.81π2.一空間幾何體的三視圖如下圖所示,則該幾何體的體積為()A.1 B.3 C.6 D.23.如圖,在中,,,若,則()A. B. C. D.4.已知數(shù)列的前項(xiàng)為和,且,則()A.5 B. C. D.95.函數(shù)(,)的部分圖象如圖所示,則的值分別是()A. B. C. D.6.將某選手的7個(gè)得分去掉1個(gè)最高分,去掉1個(gè)最低分,5個(gè)剩余分?jǐn)?shù)的平均分為21,現(xiàn)場作的7個(gè)分?jǐn)?shù)的莖葉圖后來有1個(gè)數(shù)據(jù)模糊,無法辨認(rèn),在圖中以x表示,則5個(gè)剩余分?jǐn)?shù)的方差為()A. B. C.36 D.7.函數(shù)的定義域?yàn)镽,數(shù)列是公差為的等差數(shù)列,若,,則()A.恒為負(fù)數(shù) B.恒為正數(shù)C.當(dāng)時(shí),恒為正數(shù);當(dāng)時(shí),恒為負(fù)數(shù) D.當(dāng)時(shí),恒為負(fù)數(shù);當(dāng)時(shí),恒為正數(shù)8.在等比數(shù)列中,,,則()A. B.C. D.9.函數(shù)則=()A. B. C.2 D.010.己知的周長為,內(nèi)切圓的半徑為,,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列中,其前項(xiàng)和為,且,,當(dāng)取最大值時(shí),的值等于_____.12.已知正實(shí)數(shù)x,y滿足2x+y=2,則xy的最大值為______.13.若滿足約束條件,的最小值為,則________.14.七位評(píng)委為某跳水運(yùn)動(dòng)員打出的分?jǐn)?shù)的莖葉圖如圖,其中位數(shù)為_______.15.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層燈數(shù)為_____________16.利用直線與圓的有關(guān)知識(shí)求函數(shù)的最小值為_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某中學(xué)高二年級(jí)的甲、乙兩個(gè)班中,需根據(jù)某次數(shù)學(xué)預(yù)賽成績選出某班的5名學(xué)生參加數(shù)學(xué)競賽決賽,已知這次預(yù)賽他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學(xué)生成績的平均分是83,乙班5名學(xué)生成績的中位數(shù)是1.(1)求出x,y的值,且分別求甲、乙兩個(gè)班中5名學(xué)生成績的方差、,并根據(jù)結(jié)果,你認(rèn)為應(yīng)該選派哪一個(gè)班的學(xué)生參加決賽?(2)從成績在85分及以上的學(xué)生中隨機(jī)抽取2名.求至少有1名來自甲班的概率.18.已知向量,.(Ⅰ)求;(Ⅱ)若向量與垂直,求的值.19.已知函數(shù).(1)求函數(shù)的最小正周期和值域;(2)設(shè)為的三個(gè)內(nèi)角,若,,求的值.20.如圖,在四棱錐中,底面是正方形,側(cè)面⊥底面,若分別為的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)求證:平面⊥平面.21.已知函數(shù).(Ⅰ)求的定義域;(Ⅱ)設(shè)是第一象限角,且,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】由三視圖可知,此組合體上部是一個(gè)母線長為5,底面圓半徑是3的圓錐,下部是一個(gè)高為5,底面半徑是3的圓柱故它的體積是5×π×32+π×32×=57π故選C2、D【解析】
幾何體是一個(gè)四棱錐,四棱錐的底面是一個(gè)直角梯形,直角梯形的上底是1,下底是2,垂直于底邊的腰是2,一條側(cè)棱與底面垂直,這條側(cè)棱長是2.【詳解】由三視圖可知,幾何體是一個(gè)四棱錐,四棱錐的底面是一個(gè)直角梯形,直角梯形的上底是1,下底是2,垂直于底邊的腰是2,一條側(cè)棱與底面垂直,這條側(cè)棱長是2.四棱錐的體積是.故選D.【點(diǎn)睛】本題考查由三視圖求幾何體的體積,由三視圖求幾何體的體積,關(guān)鍵是由三視圖還原幾何體,同時(shí)還需掌握求體積的常用技巧如:割補(bǔ)法和等價(jià)轉(zhuǎn)化法.3、B【解析】∵∴又,∴故選B.4、D【解析】
先根據(jù)已知求出數(shù)列的通項(xiàng),再求解.【詳解】當(dāng)時(shí),,可得;當(dāng)且時(shí),,得,故數(shù)列為等比數(shù)列,首項(xiàng)為4,公比為2.所以所以.故選D【點(diǎn)睛】本題主要考查項(xiàng)和公式求數(shù)列通項(xiàng),考查等比數(shù)列的通項(xiàng)的求法,意在考查學(xué)生對這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.5、A【解析】
利用,求出,再利用,求出即可【詳解】,,,則有,代入得,則有,,,又,故答案選A【點(diǎn)睛】本題考查三角函數(shù)的圖像問題,依次求出和即可,屬于簡單題6、B【解析】
由剩余5個(gè)分?jǐn)?shù)的平均數(shù)為21,據(jù)莖葉圖列方程求出x=4,由此能求出5個(gè)剩余分?jǐn)?shù)的方差.【詳解】∵將某選手的7個(gè)得分去掉1個(gè)最高分,去掉1個(gè)最低分,剩余5個(gè)分?jǐn)?shù)的平均數(shù)為21,∴由莖葉圖得:得x=4,∴5個(gè)分?jǐn)?shù)的方差為:S2故選B【點(diǎn)睛】本題考查方差的求法,考查平均數(shù)、方差、莖葉圖基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是基礎(chǔ)題.7、A【解析】
由函數(shù)的解析式可得函數(shù)是奇函數(shù),且為單調(diào)遞增函數(shù),分和兩種情況討論,分別利用函數(shù)的奇偶性和單調(diào)性,即可求解,得到結(jié)論.【詳解】由題意,因?yàn)楹瘮?shù),根據(jù)冪函數(shù)和反正切函數(shù)的性質(zhì),可得函數(shù)在為單調(diào)遞增函數(shù),且滿足,所以函數(shù)為奇函數(shù),因?yàn)閿?shù)列是公差為的等差數(shù)列,且,則①當(dāng)時(shí),由,可得,所以,所以,同理可得:,所以,②當(dāng)時(shí),由,則,所以綜上可得,實(shí)數(shù)恒為負(fù)數(shù).故選:A.【點(diǎn)睛】本題主要考查了函數(shù)的單調(diào)性與奇偶性的應(yīng)用,以及等差數(shù)列的性質(zhì)的應(yīng)用,其中解答中合理利用等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì)求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.8、B【解析】
設(shè)等比數(shù)列的公比為,由等比數(shù)列的定義知與同號(hào),再利用等比中項(xiàng)的性質(zhì)可求出的值.【詳解】設(shè)等比數(shù)列的公比為,則,,.由等比中項(xiàng)的性質(zhì)可得,因此,,故選:B.【點(diǎn)睛】本題考查等比中項(xiàng)性質(zhì)的應(yīng)用,同時(shí)也要利用等比數(shù)列的定義判斷出項(xiàng)的符號(hào),考查運(yùn)算求解能力,屬于中等題.9、B【解析】
先求得的值,進(jìn)而求得的值.【詳解】依題意,,故選B.【點(diǎn)睛】本小題主要考查分段函數(shù)求值,考查運(yùn)算求解能力,屬于基礎(chǔ)題.10、C【解析】
根據(jù)的周長為,內(nèi)切圓的半徑為,求得,再利用正弦定理,得到,然后代入余弦定理,化簡得到求解.【詳解】因?yàn)榈闹荛L為,內(nèi)切圓的半徑為,所以,又因?yàn)?,所?由余弦定理得:,,所以,所以,即,因?yàn)锳為內(nèi)角,所以,所以.故選:C【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】
設(shè)等差數(shù)列的公差為,由可得出與的等量關(guān)系,然后求出的表達(dá)式,解不等式,即可得出使得取得最大值的正整數(shù)的值.【詳解】設(shè)等差數(shù)列的公差為,由,可得,可得,,令,即,,解得.因此,當(dāng)或時(shí),取得最大值.故答案為:或.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和的最大值的求解,可利用二次函數(shù)的基本性質(zhì)來求,也可以轉(zhuǎn)化為等差數(shù)列所有的非負(fù)項(xiàng)之和的問題求解,考查化歸與轉(zhuǎn)化思想,屬于中等題.12、【解析】
由基本不等式可得,可求出xy的最大值.【詳解】因?yàn)?,所以,故,?dāng)且僅當(dāng)時(shí),取等號(hào).故答案為.【點(diǎn)睛】利用基本不等式求最值必須具備三個(gè)條件:①各項(xiàng)都是正數(shù);②和(或積)為定值;③等號(hào)取得的條件.13、4【解析】
由約束條件得到可行域,取最小值時(shí)在軸截距最小,通過直線平移可知過時(shí),取最小值;求出點(diǎn)坐標(biāo),代入構(gòu)造出方程求得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示:取最小值時(shí),即在軸截距最小平移直線可知,當(dāng)過點(diǎn)時(shí),在軸截距最小由得:,解得:本題正確結(jié)果:【點(diǎn)睛】本題考查現(xiàn)行規(guī)劃中根據(jù)最值求解參數(shù)的問題,關(guān)鍵是能夠明確最值取得的點(diǎn),屬于??碱}型.14、85【解析】
按照莖葉圖,將這組數(shù)據(jù)按照從小到大的順序排列,找出中間的一個(gè)數(shù)即可.【詳解】按照莖葉圖,這組數(shù)據(jù)是79,83,84,85,87,92,93.把這組數(shù)據(jù)按照從小到大的順序排列,最中間一個(gè)是85.所以中位數(shù)為85.故答案為:85【點(diǎn)睛】本題考查對莖葉圖的認(rèn)識(shí).考查中位數(shù),屬于基礎(chǔ)題.15、1【解析】分析:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,利用等比數(shù)列前n項(xiàng)和公式能求出結(jié)果.詳解:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,∴S7=a1(1-2點(diǎn)睛:本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力.16、【解析】
令得,轉(zhuǎn)化為z==,再利用圓心到直線距離求最值即可【詳解】令,則故轉(zhuǎn)化為z==,表示上半個(gè)圓上的點(diǎn)到直線的距離的最小值的5倍,即故答案為3【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式,考查數(shù)形結(jié)合思想,是中檔題三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(3)甲班參加;(4).【解析】
試題分析:(3)由題意知求出x=5,y=4.從而求出乙班學(xué)生的平均數(shù)為83,分別求出S34和S44,根據(jù)甲、乙兩班的平均數(shù)相等,甲班的方差小,得到應(yīng)該選派甲班的學(xué)生參加決賽.(4)成績在85分及以上的學(xué)生一共有5名,其中甲班有4名,乙班有3名,由此能求出隨機(jī)抽取4名,至少有3名來自甲班的概率.試題解析:(3)甲班的平均分為,易知.;又乙班的平均分為,∴;∵,,說明甲班同學(xué)成績更加穩(wěn)定,故應(yīng)選甲班參加.(4)分及以上甲班有人,設(shè)為;乙班有人,設(shè)為,從這人中抽取人的選法有:,共種,其中甲班至少有名學(xué)生的選法有種,則甲班至少有名學(xué)生被抽到的概率為.考點(diǎn):3.古典概型及其概率計(jì)算公式;4.莖葉圖.18、(Ⅰ)-1;(Ⅱ)【解析】
(Ⅰ)利用向量的數(shù)量積的坐標(biāo)表示進(jìn)行計(jì)算;(Ⅱ)由垂直關(guān)系,得到坐標(biāo)間的等式關(guān)系,然后計(jì)算出參數(shù)的值.【詳解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量與垂直,∴∴,∴【點(diǎn)睛】已知,若,則有;已知,若,則有.19、(1)周期,值域?yàn)椋唬?).【解析】
(1)利用二倍角降冪公式與輔助角公式將函數(shù)的解析式進(jìn)行化簡,利用周期公式求出函數(shù)的最小正周期,并求出函數(shù)的值域;(2)先由的值,求出角的值,然后由結(jié)合同角三角函數(shù)的基本關(guān)系以及兩角和的余弦公式求出的值.【詳解】(1)∵且,∴所求周期,值域?yàn)椋唬?)∵是的三個(gè)內(nèi)角,,∴∴又,即,又∵,故,故.【點(diǎn)睛】本題考查三角函數(shù)與解三角形的綜合問題,考查三角函數(shù)的基本性質(zhì)以及三角形中的求值問題,求解三角函數(shù)的問題時(shí),要將三角函數(shù)解析式進(jìn)行化簡,結(jié)合正余弦函數(shù)的基本性質(zhì)求解,考查分析問題的能力和計(jì)算能力,屬于中等題.20、(1)證明見解析;(2)證明見解析.【解析】
(Ⅰ)利用線面平行的判定定理,只需證明EF∥PA,即可;(Ⅱ)先證明線面垂直,CD⊥平面PAD,再證明面面垂直,平面PAD⊥平面PDC
即可.【詳解】(Ⅰ)證明:連結(jié)AC,在正方形ABCD中,F(xiàn)為BD中點(diǎn),正方形對角線互相平分,∴F為AC中點(diǎn),又E是PC中點(diǎn),在△CPA中,EF∥PA,且PA?平面PAD,EF?平面PAD,∴EF∥平面PAD.(Ⅱ)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,平面∴CD⊥平面PAD,∵CD?平面PDC,∴平面PAD⊥平面PDC【點(diǎn)睛】本題主要考查空間直線與平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年專業(yè)經(jīng)銷住宅合同
- 2025年住宅購買居間合同標(biāo)準(zhǔn)文本
- 2025年船舶涂料項(xiàng)目規(guī)劃申請報(bào)告模板
- 2025年加工鹽項(xiàng)目規(guī)劃申請報(bào)告模式
- 2025年水利設(shè)施開發(fā)管理服務(wù)項(xiàng)目提案報(bào)告模板
- 2025年專業(yè)軟件技術(shù)支持合同示范文本
- 2025年石膏行業(yè)誠信購銷協(xié)議
- 2025年絕緣材料:絕緣套管項(xiàng)目提案報(bào)告模稿
- 2025年人才發(fā)展合作框架協(xié)議
- 2025年兒童監(jiān)護(hù)權(quán)放棄協(xié)議范例
- 1.北京的春節(jié) 練習(xí)題(含答案)
- 抗震支架安裝工程施工方案范文
- 2025年中煤科工集團(tuán)北京華宇工程限公司中層干部公開招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- GB/T 17145-2024廢礦物油回收與再生利用導(dǎo)則
- 人教版小學(xué)英語單詞表(按首字母排列)
- GB/T 45006-2024風(fēng)電葉片用纖維增強(qiáng)復(fù)合材料拉擠板材
- 婦科常見病的護(hù)理常規(guī)
- 《銀行案件防控培訓(xùn)》課件
- 炎癥性腸病共識(shí)2024
- 《單片機(jī)應(yīng)用技術(shù)》課件第1章
- 幼兒園小班美術(shù)活動(dòng)《飛舞的彩帶》課件
評(píng)論
0/150
提交評(píng)論