版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
新疆阿克蘇市沙雅縣二中2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),,若是與的等比中項,則的最小值為()A. B. C.3 D.2.若直線經(jīng)過A(1,0),B(2,3)兩點,則直線A.135° B.120° C.60° D.45°3.某學(xué)生用隨機模擬的方法推算圓周率的近似值,在邊長為的正方形內(nèi)有一內(nèi)切圓,向正方形內(nèi)隨機投入粒芝麻,(假定這些芝麻全部落入該正方形中)發(fā)現(xiàn)有粒芝麻落入圓內(nèi),則該學(xué)生得到圓周率的近似值為()A. B. C. D.4.已知是所在平面內(nèi)一點,且滿足,則為A.等腰三角形 B.直角三角形 C.等邊三角形 D.等腰直角三角形5.在△ABC中,已知,P為線段AB上的點,且的最大值為()A.3B.4C.5D.66.在空間中,給出下列說法:①平行于同一個平面的兩條直線是平行直線;②垂直于同一條直線的兩個平面是平行平面;③若平面內(nèi)有不共線的三點到平面的距離相等,則;④過平面的一條斜線,有且只有一個平面與平面垂直.其中正確的是()A.①③ B.②④ C.①④ D.②③7.函數(shù)在區(qū)間(,)內(nèi)的圖象是()A. B. C. D.8.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π49.已知直線經(jīng)過,兩點,則直線的斜率為A. B. C. D.10.?dāng)S兩顆均勻的骰子,則點數(shù)之和為5的概率等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)等差數(shù)列的前項和為,若,,則的值為______.12.若存在實數(shù),使不等式成立,則的取值范圍是_______________.13.設(shè)變量x、y滿足約束條件,則目標(biāo)函數(shù)的最大值為_______.14.某工廠生產(chǎn)三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為,現(xiàn)用分層抽樣方法抽出一個容量為的樣本,樣本中種型號產(chǎn)品有16件,那么此樣本的容量=15.在中,角為直角,線段上的點滿足,若對于給定的是唯一確定的,則_______.16.已知點A(-a,0),B(a,0)(a>0),若圓(x-2)2+(y-2)2=2上存在點C三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,分別是角的對邊,且.(1)求的大小;(2)若,求的面積.18.設(shè)常數(shù)函數(shù)(1)若求函數(shù)的反函數(shù)(2)根據(jù)的不同取值,討論函數(shù)的奇偶性,并說明理由.19.如圖,在四棱錐中,底面是矩形,底面,是的中點,已知,,,求:(1)直線與平面所成角的正切值;(2)三棱錐的體積.20.計算:(1)(2)(3)21.已知數(shù)列的通項公式為.(1)求這個數(shù)列的第10項;(2)在區(qū)間內(nèi)是否存在數(shù)列中的項?若有,有幾項?若沒有,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
先由題意求出,再結(jié)合基本不等式,即可求出結(jié)果.【詳解】因為是與的等比中項,所以,故,因為,,所以,當(dāng)且僅當(dāng),即時,取等號;故選C【點睛】本題主要考查基本不等式的應(yīng)用,熟記基本不等式即可,屬于??碱}型.2、C【解析】
利用斜率公式求出直線AB,根據(jù)斜率值求出直線AB的傾斜角.【詳解】直線AB的斜率為kAB=3-02-1【點睛】本題考查直線的傾斜角的求解,考查直線斜率公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題。3、B【解析】
由落入圓內(nèi)的芝麻數(shù)占落入正方形區(qū)域內(nèi)的芝麻數(shù)的比例等于圓的面積與正方形的面積比相等,列等式求出的近似值.【詳解】邊長為的正方形內(nèi)有一內(nèi)切圓的半徑為,圓的面積為,正方形的面積為,由幾何概型的概率公式可得,得,因此,該學(xué)生得到圓周率的近似值為,故選:B.【點睛】本題考查利用隨機模擬思想求圓周率的近似值,解題的關(guān)鍵就是利用概率相等結(jié)合幾何概型的概率公式列等式求解,考查計算能力,屬于基礎(chǔ)題.4、B【解析】
由向量的減法法則,將題中等式化簡得,進而得到,由此可得以為鄰邊的平行四邊形為矩形,得的形狀是直角三角形?!驹斀狻恳驗椋?,因為,所以,因為,所以,由此可得以為鄰邊的平行四邊形為矩形,所以,得的形狀是直角三角形?!军c睛】本題給出向量等式,判斷三角形的形狀,著重考查平面向量的加法、減法法則和三角形的形狀判斷等知識。5、A【解析】試題分析:在中,設(shè),∵,,即,∴,∵,∴,即.∵,,∴,,∴.根據(jù)直角三角形可得,,,∴,以所在的直線為軸,以所在的直線為軸建立直角坐標(biāo)系可得,為線段上的一點,則存在實數(shù)使得.設(shè),,則,且,∴,可得則,即,解得,故所求的最大值為:,故選A.考點:三角形的內(nèi)角和定理,兩角和的正弦公式,基本不等式求解最值.6、B【解析】
說法①:可以根據(jù)線面平行的判定理判斷出本說法是否正確;說法②:根據(jù)線面垂直的性質(zhì)和面面平行的判定定理可以判斷出本說法是否正確;說法③:當(dāng)與相交時,是否在平面內(nèi)有不共線的三點到平面的距離相等,進行判斷;說法④:可以通過反證法進行判斷.【詳解】①平行于同一個平面的兩條直線可能平行、相交或異面,不正確;易知②正確;③若平面內(nèi)有不共線的三點到平面的距離相等,則與可能平行,也可能相交,不正確;易知④正確.故選B.【點睛】本題考查了線線位置關(guān)系、面面位置關(guān)系的判斷,分類討論是解題的關(guān)鍵,反證法是經(jīng)常用到的方程.7、D【解析】解:函數(shù)y=tanx+sinx-|tanx-sinx|=分段畫出函數(shù)圖象如D圖示,故選D.8、D【解析】
由BC=2AC,根據(jù)正弦定理可得:sinA=2sinB,由角【詳解】由于在ΔABC中,有BC=2AC,根據(jù)正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函數(shù)的圖像可得:A∈[故答案選D【點睛】本題考查正弦定理在三角形中的應(yīng)用,以及三角函數(shù)圖像的應(yīng)用,屬于中檔題.9、C【解析】
由兩點法求斜率的公式可直接計算斜率值.【詳解】直線經(jīng)過,兩點,直線的斜率為.【點睛】本題考查用兩點法求直線斜率,屬于基礎(chǔ)題.10、B【解析】
試題分析:擲兩顆均勻的骰子,共有36種基本事件,點數(shù)之和為5的事件有(1,4),(2,3),(3,2),(4,1)這四種,因此所求概率為,選B.考點:概率問題二、填空題:本大題共6小題,每小題5分,共30分。11、-6【解析】
由題意可得,求解即可.【詳解】因為等差數(shù)列的前項和為,,所以由等差數(shù)列的通項公式與求和公式可得解得.故答案為-6.【點睛】本題考查了等差數(shù)列的通項公式與求和公式,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.12、;【解析】
不等式轉(zhuǎn)化為,由于存在,使不等式成立,因此只要求得的最小值即可.【詳解】由題意存在,使得不等式成立,當(dāng)時,,其最小值為,∴.故答案為.【點睛】本題考查不等式能成立問題,解題關(guān)鍵是把問題轉(zhuǎn)化為求函數(shù)的最值.不等式能成立與不等式恒成立問題的轉(zhuǎn)化區(qū)別:在定義域上,不等式恒成立,則,不等式能成立,則,不等式恒成立,則,不等式能成立,則.轉(zhuǎn)化時要注意是求最大值還是求最小值.13、3【解析】
可通過限定條件作出對應(yīng)的平面區(qū)域圖,再根據(jù)目標(biāo)函數(shù)特點進行求值【詳解】可行域如圖所示;則可化為,由圖象可知,當(dāng)過點時,有最大值,則其最大值為:故答案為:3.【點睛】線性規(guī)劃問題關(guān)鍵是能正確畫出可行域,目標(biāo)函數(shù)可由幾何意義確定具體含義(最值或斜率)14、1.【解析】
解:A種型號產(chǎn)品所占的比例為2/(2+3+5)=2/10,16÷2/10=1,故樣本容量n=1,15、【解析】
設(shè),根據(jù)已知先求出x的值,再求的值.【詳解】設(shè),則.依題意,若對于給定的是唯一的確定的,函數(shù)在(1,)是增函數(shù),在(,+)是減函數(shù),所以,此時,.故答案為【點睛】本題主要考查對勾函數(shù)的圖像和性質(zhì),考查差角的正切的計算和同角的三角函數(shù)的關(guān)系,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.16、3【解析】
利用參數(shù)方程假設(shè)C點坐標(biāo),表示出AC和BC,利用AC?BC=0可得到a【詳解】設(shè)C∴∵∠ACB=90°∴∴當(dāng)sinα+∴0<a≤3本題正確結(jié)果:3【點睛】本題考查圓中參數(shù)范圍求解的問題,關(guān)鍵是能夠利用圓的參數(shù)方程,利用向量數(shù)量積及三角函數(shù)關(guān)系求得最值.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】試題分析:(Ⅰ)先由正弦定理將三角形的邊角關(guān)系轉(zhuǎn)化為角角關(guān)系,再利用兩角和的正弦公式和誘導(dǎo)公式進行求解;(Ⅱ)先利用余弦定理求出,再利用三角形的面積公式進行求解.試題解析:(Ⅰ)由又所以.(Ⅱ)由余弦定理有,解得,所以點睛:在利用余弦定理進行求解時,往往利用整體思想,可減少計算量,若本題中的.18、(1)(2)時,是偶函數(shù);時,是奇函數(shù);當(dāng)且時,為非奇非偶函數(shù),理由見解析【解析】
(1)根據(jù)反函數(shù)的定義,即可求出;
(2)利用分類討論的思想,若為偶函數(shù),求出的值,若為奇函數(shù),求出的值,問題得以解決.【詳解】解:(1)∵,
∴
,
,
∴調(diào)換的位置可得,.所以函數(shù)的反函數(shù)
(2)若為偶函數(shù),則對任意均成立,
,整理可得.不恒為0,,此時,滿足為偶函數(shù);
若為奇函數(shù),則對任意均成立,
,整理可得,,,,
此時,滿足條件;
當(dāng)且時,為非奇非偶函數(shù),
綜上所述,時,是偶函數(shù);時,是奇函數(shù);當(dāng)且時,為非奇非偶函數(shù).【點睛】本題主要考查了反函數(shù)的定義和函數(shù)的奇偶性,利用了分類討論的思想,屬于中檔題.19、(1);(2)【解析】
(1)要求直線與平面所成角的正切值,先要找到直線在平面上的射影,即在直線上找一點作平面的垂線,結(jié)合已知與圖形,轉(zhuǎn)化為證明平面再求解;(2)三棱錐的體積計算在于選取合適的底和高,此題以為底,與的中點的連線為高計算更為快速,從而轉(zhuǎn)化為證明平面再求解.【詳解】(1)平面,平面又,,平面,平面所以平面,所以為直線與平面所成角。易證是一個直角三角形,所以.(2)如圖,設(shè)的中點為,則,平面,平面,又,,,又,,,所以平面,所以為三棱錐的高.因此可求【點睛】本題主要考察線面角與三棱錐體積的計算.線面角的關(guān)鍵在于找出直線在平面上的射影,一般轉(zhuǎn)化為直線與平面的垂直;三棱錐體積的計算主要在于選擇合適的底和高.20、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年船舶股權(quán)轉(zhuǎn)讓仲裁協(xié)議3篇
- 2024年建筑領(lǐng)域鋼結(jié)構(gòu)分包合同樣本版B版
- 2024年度跨境電商物流三方入股合作協(xié)議書3篇
- 2024年版工程建設(shè)項目履約擔(dān)保合同版
- 2024事業(yè)單位項目聘用合同樣本及附件匯編3篇
- 2024年度建筑五金材料供應(yīng)鏈管理合同范本3篇
- 2024年苗木產(chǎn)品購銷合同
- 2024年股權(quán)轉(zhuǎn)讓專項協(xié)議范本版B版
- 2024年版土地中介服務(wù)合同版B版
- 2024年度火車站保潔阿姨服務(wù)合同
- 人教版八年級上冊數(shù)學(xué)期末考試試題有答案
- 低空經(jīng)濟產(chǎn)業(yè)的市場化運營路徑
- 混凝土企業(yè)安全培訓(xùn)
- 《腫瘤與營養(yǎng)》課件
- 國際政治學(xué)概論,宋新寧、陳岳
- 五年級上冊英語期末必考易錯題
- 心腦血管疾病預(yù)防課件
- 2024年財會業(yè)務(wù)知識競賽題庫及答案(630題)
- 科研倫理與學(xué)術(shù)規(guī)范-期末考試答案
- 廣告設(shè)計與創(chuàng)意作業(yè)指導(dǎo)書
- 北京奧林匹克公園規(guī)劃設(shè)計方案
評論
0/150
提交評論