安徽省淮南市壽縣中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
安徽省淮南市壽縣中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
安徽省淮南市壽縣中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
安徽省淮南市壽縣中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
安徽省淮南市壽縣中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省淮南市壽縣中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.等比數(shù)列的前項和為,若,則公比()A. B. C. D.2.已知偶函數(shù)在區(qū)間上單調(diào)遞增,且圖象經(jīng)過點和,則當時,函數(shù)的值域是()A. B. C. D.3.經(jīng)過點,和直線相切,且圓心在直線上的圓方程為()A. B.C. D.4.已知,則比多了幾項()A.1 B. C. D.5.若,則是()A.等邊三角形 B.等腰三角形C.直角或等腰三角形 D.等腰直角三角形6.設(shè)是△所在平面上的一點,若,則的最小值為A. B. C. D.7.在中,角所對的邊分別為.若,,,則等于()A. B. C. D.8.已知一個幾何體是由半徑為2的球挖去一個三棱錐得到(三棱錐的頂點均在球面上).若該幾何體的三視圖如圖所示(側(cè)視圖中的四邊形為菱形),則該三棱錐的體積為()A. B. C. D.9.如圖是一三棱錐的三視圖,則此三棱錐內(nèi)切球的體積為()A. B. C. D.10.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”.則該人最后一天走的路程為().A.24里 B.12里 C.6里. D.3里二、填空題:本大題共6小題,每小題5分,共30分。11.若正四棱錐的底面邊長為,側(cè)棱長為,則該正四棱錐的體積為______.12.已知與的夾角為,,,則________.13.若數(shù)列{an}滿足a1=2,a14.若數(shù)列滿足,且,則___________.15.若直線:與直線的交點位于第一象限,則直線的傾斜角的取值范圍是___________.16.已知兩個數(shù)k+9和6-k的等比中項是2k,則k=________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,.(1)若,求證:數(shù)列為等比數(shù)列.(2)若,求.18.在等差數(shù)列{an}中,2a9=a12+13,a3=7,其前n項和為Sn.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列{}的前n項和Tn,并證明Tn<.19.已知等比數(shù)列的前項和為,,,且.(1)求的通項公式;(2)是否存在正整數(shù),使得成立?若存在,求出的最小值;若不存在,請說明理由.20.某同學(xué)利用暑假時間到一家商場勤工儉學(xué),該商場向他提供了三種付酬方案:第一種,每天支付元,沒有獎金;第二種,每天的底薪元,另有獎金.第一天獎金元,以后每天支付的薪酬中獎金比前一天的獎金多元;第三種,每天無底薪,只有獎金.第一天獎金元,以后每天支付的獎金是前一天的獎金的倍.(1)工作天,記三種付費方式薪酬總金額依次為、、,寫出、、關(guān)于的表達式;(2)該學(xué)生在暑假期間共工作天,他會選擇哪種付酬方式?21.已知函數(shù)(1)求函數(shù)的最大值,以及取到最大值時所對應(yīng)的的集合;(2)在上恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

將轉(zhuǎn)化為關(guān)于的方程,解方程可得的值.【詳解】∵,∴,又,∴.故選A.【點睛】本題考查等比數(shù)列的基本運算,等比數(shù)列中共有五個量,其中是基本量,這五個量可“知三求二”,求解的實質(zhì)是解方程或解方程組.2、A【解析】

由題意結(jié)合函數(shù)的單調(diào)性和函數(shù)的奇偶性確定函數(shù)的值域即可.【詳解】偶函數(shù)在區(qū)間上單調(diào)遞增,則函數(shù)在上單調(diào)遞減,且,故函數(shù)的值域為.本題選擇A選項.【點睛】本題主要考查函數(shù)的單調(diào)性,函數(shù)的奇偶性,函數(shù)值域的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.3、B【解析】

設(shè)出圓心坐標,由圓心到切線的距離和它到點的距離都是半徑可求解.【詳解】由題意設(shè)圓心為,則,解得,即圓心為,半徑為.圓方程為.故選:B.【點睛】本題考查求圓的標準方程,考查直線與圓的位置關(guān)系.求出圓心坐標與半徑是求圓標準方程的基本方法.4、D【解析】

由寫出,比較兩個等式得多了幾項.【詳解】由題意,則,那么:,又比多了項.故選:D.【點睛】本題考查對函數(shù)的理解和帶值計算問題,屬于基礎(chǔ)題.5、D【解析】

先根據(jù)題中條件,結(jié)合正弦定理得到,求出角,同理求出角,進而可判斷出結(jié)果.【詳解】因為,由正弦定理可得,所以,即,因為角為三角形內(nèi)角,所以;同理,;所以,因此,是等腰直角三角形.故選D【點睛】本題主要考查判定三角形的形狀問題,熟記正弦定理即可,屬于??碱}型.6、C【解析】分析:利用向量的加法運算,設(shè)的中點為D,可得,利用數(shù)量積的運算性質(zhì)可將原式化簡為,為AD中點,從而得解.詳解:由,可得.設(shè)的中點為D,即.點P是△ABC所在平面上的任意一點,為AD中點.∴.當且僅當,即點與點重合時,有最小值.故選C.點睛:(1)應(yīng)用平面向量基本定理表示向量的實質(zhì)是利用平行四邊形法則或三角形法則進行向量的加、減或數(shù)乘運算.(2)用向量基本定理解決問題的一般思路是:先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.7、B【解析】

利用正弦定理可求.【詳解】由正弦定理得.故選B.【點睛】本題考查正弦定理的應(yīng)用,屬于容易題.8、C【解析】由三視圖可知,三棱錐的體積為9、D【解析】把此三棱錐嵌入長寬高分別為:的長方體中三棱錐即為所求的三棱錐其中,,,則,故可求得三棱錐各面面積分別為:,,,故表面積為三棱錐體積設(shè)內(nèi)切球半徑為,則故三棱錐內(nèi)切球體積故選10、C【解析】

由題意可知,每天走的路程里數(shù)構(gòu)成以為公比的等比數(shù)列,由求得首項,再由等比數(shù)列的通項公式求得該人最后一天走的路程.【詳解】解:記每天走的路程里數(shù)為,可知是公比的等比數(shù)列,由,得,解得:,,故選C.【點睛】本題考查等比數(shù)列的通項公式,考查了等比數(shù)列的前項和,是基礎(chǔ)的計算題.二、填空題:本大題共6小題,每小題5分,共30分。11、4.【解析】

設(shè)正四棱錐的高為PO,連結(jié)AO,在直角三角形POA中,求得高,利用體積公式,即可求解.【詳解】由題意,如圖所示,正四棱錐P-ABCD中,AB=,PA=設(shè)正四棱錐的高為PO,連結(jié)AO,則AO=,在直角三角形POA中,,∴.【點睛】本題主要考查了正棱錐體積的計算,其中解答中熟記正棱錐的性質(zhì),以及棱錐的體積公式,準確計算是解答的關(guān)鍵,著重考查了推理與運算能力.12、3【解析】

將平方再利用數(shù)量積公式求解即可.【詳解】因為,故.化簡得.因為,故.故答案為:3【點睛】本題主要考查了模長與數(shù)量積的綜合運用,經(jīng)常利用平方去處理.屬于基礎(chǔ)題.13、2×【解析】

判斷數(shù)列是等比數(shù)列,然后求出通項公式.【詳解】數(shù)列{an}中,a可得數(shù)列是等比數(shù)列,等比為3,an故答案為:2×3【點睛】本題考查等比數(shù)列的判斷以及通項公式的求法,考查計算能力.14、【解析】

對已知等式左右取倒數(shù)可整理得到,進而得到為等差數(shù)列;利用等差數(shù)列通項公式可求得,進而得到的通項公式,從而求得結(jié)果.【詳解】,即數(shù)列是以為首項,為公差的等差數(shù)列故答案為:【點睛】本題考查利用遞推公式求解數(shù)列通項公式的問題,關(guān)鍵是明確對于形式的遞推關(guān)系式,采用倒數(shù)法來進行推導(dǎo).15、【解析】若直線與直線的交點位于第一象限,如圖所示:則兩直線的交點應(yīng)在線段上(不包含點),當交點為時,直線的傾斜角為,當交點為時,斜率,直線的傾斜角為∴直線的傾斜角的取值范圍是.故答案為16、3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)答案見解析【解析】

(1)證明即可;(2)化簡,討論,和即可求解【詳解】因為,所以,所以.又所以數(shù)列是以3為首項,9為公比的等比數(shù)列.(2)因為,所以,所以:當時,當時,.當時,.【點睛】本題考查等比數(shù)列的證明,極限的運算,注意分類討論的應(yīng)用,是中檔題18、(1)(2)見解析【解析】

(1)等差數(shù)列{an}的公差設(shè)為d,運用等差數(shù)列的通項公式,解方程可得首項和公差,進而得到所求通項公式;(2)運用等差數(shù)列的求和公式,求得(),再由數(shù)列的裂項相消求和可得Tn,再由不等式的性質(zhì)即可得證.【詳解】(1)等差數(shù)列{an}的公差設(shè)為d,2a9=a12+13,a3=7,可得2(a1+8d)=a1+11d+13,a1+2d=7,解得a1=3,d=2,則an=3+2(n﹣1)=2n+1;(2)Snn(3+2n+1)=n(n+2),(),前n項和Tn(1)(1)().【點睛】本題考查等差數(shù)列的通項公式和求和公式的運用,以及數(shù)列的裂項相消求和,考查方程思想和運算能力,屬于中檔題.19、(1);(2)存在,【解析】

(1)根據(jù)條件求解出公比,然后寫出等比數(shù)列通項;(2)先表示出,然后考慮的的最小值.【詳解】(1)因為,所以或,又,則,所以;(2)因為,則,當為偶數(shù)時有不符合;所以為奇數(shù),且,,所以且為奇數(shù),故.【點睛】本題考查等比數(shù)列通項及其前項和的應(yīng)用,難度一般.對于公比為負數(shù)的等比數(shù)列,分析前項和所滿足的不等式時,注意分類討論,因此的奇偶會影響的正負.20、(1),,;(2)第三種,理由見解析.【解析】

(1)三種支付方式每天支付的金額依次為數(shù)列、、,可知數(shù)列為常數(shù)數(shù)列,數(shù)列是以為首項,以為公差的等差數(shù)列,數(shù)列是以為首項,以為公比的等比數(shù)列,利用等差數(shù)列和等比數(shù)列求和公式可計算出、、關(guān)于的表達式;(2)利用(1)中的結(jié)論,計算出、、的值,比較大小后可得出結(jié)論.【詳解】(1)設(shè)三種支付方式每天支付的金額依次為數(shù)列、、,它們的前項和分別為、、,第一種付酬方式每天所付金額組成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論