2025屆內(nèi)蒙古巴林右旗大板第三中學高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第1頁
2025屆內(nèi)蒙古巴林右旗大板第三中學高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第2頁
2025屆內(nèi)蒙古巴林右旗大板第三中學高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第3頁
2025屆內(nèi)蒙古巴林右旗大板第三中學高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第4頁
2025屆內(nèi)蒙古巴林右旗大板第三中學高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆內(nèi)蒙古巴林右旗大板第三中學高一數(shù)學第二學期期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,,則()A. B.C. D.2.函數(shù)的圖像()A.關于點對稱 B.關于點對稱C.關于直線對稱 D.關于直線對稱3.袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“?!?、“園”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生到之間取整數(shù)值的隨機數(shù),分別用,,,代表“和”、“諧”、“校”、“園”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.4.若直線平分圓的周長,則的值為()A.-1 B.1 C.3 D.55.如圖所示,4個散點圖中,不適合用線性回歸模型擬合其中兩個變量的是()A. B.C. D.6.化為弧度是A. B. C. D.7.一空間幾何體的三視圖如下圖所示,則該幾何體的體積為()A.1 B.3 C.6 D.28.若點在圓外,則a的取值范圍是()A. B. C. D.或9.一個正方體內(nèi)接于一個球,過球心作一個截面,如圖所示,則截面的可能圖形是()A.①③④ B.②④ C.②③④ D.①②③10.執(zhí)行如圖所示的程序框圖,若輸入的a,b的值分別為1,1,則輸出的是()A.29 B.17 C.12 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.已知等比數(shù)列、、、滿足,,,則的取值范圍為__________.12.計算:______.13.甲、乙兩名新戰(zhàn)土組成戰(zhàn)術小組進行射擊訓練,已知單發(fā)射擊時,甲戰(zhàn)士擊中靶心的概率為0.8,乙戰(zhàn)士擊中靶心的概率為0.5,兩人射擊的情況互不影響若兩人各單發(fā)射擊一次,則至少有一發(fā)擊中靶心的概率是______.14.設,數(shù)列滿足,,將數(shù)列的前100項從大到小排列得到數(shù)列,若,則k的值為______;15.已知等比數(shù)列的前項和為,若,且,則_____.16.在空間直角坐標系中,三棱錐的各頂點都在一個半徑為的球面上,為球心,,,,,則球的體積與三棱錐的體積之比是_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知A、B分別在射線CM、CN(不含端點C)上運動,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,試用θ表示ΔABC18.甲、乙兩臺機床同時加工直徑為10cm的零件,為了檢驗零件的質(zhì)量,從零件中各隨機抽取6件測量,測得數(shù)據(jù)如下(單位:mm):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分別計算上述兩組數(shù)據(jù)的平均數(shù)和方差(2)根據(jù)(1)的計算結(jié)果,說明哪一臺機床加工的零件更符合要求.19.如圖,已知圓:,點.(1)求經(jīng)過點且與圓相切的直線的方程;(2)過點的直線與圓相交于、兩點,為線段的中點,求線段長度的取值范圍.20.在公比不為1的等比數(shù)列中,,且依次成等差數(shù)列(1)求數(shù)列的通項公式;(2)令,設數(shù)列的前項和,求證:21.如圖,在三棱錐中,,,,,為線段的中點,為線段上一點.(1)求證:平面平面;(2)當平面時,求三棱錐的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

分別求出的值再帶入即可.【詳解】因為,所以因為,所以所以【點睛】本題考查兩角差的余弦公式.屬于基礎題.2、B【解析】

根據(jù)關于點對稱,關于直線對稱來解題.【詳解】解:令,得,所以對稱點為.當,為,故B正確;令,則對稱軸為,因此直線和均不是函數(shù)的對稱軸.故選:B【點睛】本題主要考查正弦函數(shù)的對稱性問題.正弦函數(shù)根據(jù)關于點對稱,關于直線對稱.3、B【解析】

隨機模擬產(chǎn)生了18組隨機數(shù),其中第三次就停止摸球的隨機數(shù)有4個,由此可以估計,恰好第三次就停止摸球的概率.【詳解】隨機模擬產(chǎn)生了以下18組隨機數(shù):343432341342234142243331112342241244431233214344142134其中第三次就停止摸球的隨機數(shù)有:142,112,241,142,共4個,由此可以估計,恰好第三次就停止摸球的概率為p.故選:B.【點睛】本題考查概率的求法,考查列舉法等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題.4、D【解析】

求出圓的圓心坐標,由直線經(jīng)過圓心代入解得.【詳解】解:所以的圓心為因為直線平分圓的周長所以直線過圓心,即解得,故選:D.【點睛】本題考查直線與圓的位置關系的綜合應用,屬于基礎題.5、A【解析】

根據(jù)線性回歸模型建立方法,分析選項,找出散點比較分散且無任何規(guī)律的選項可得答案.【詳解】根據(jù)題意,適合用線性回歸擬合其中兩個變量的散點圖必須散點分布比較集中,且大體接近某一條直線,分析選項可得A選項的散點圖雜亂無章,最不符合條件.故選A【點睛】本題考查了統(tǒng)計案例散點圖,屬于基礎題.6、D【解析】

由于,則.【詳解】因為,所以,故選D.【點睛】本題考查角度制與弧度制的互化.7、D【解析】

幾何體是一個四棱錐,四棱錐的底面是一個直角梯形,直角梯形的上底是1,下底是2,垂直于底邊的腰是2,一條側(cè)棱與底面垂直,這條側(cè)棱長是2.【詳解】由三視圖可知,幾何體是一個四棱錐,四棱錐的底面是一個直角梯形,直角梯形的上底是1,下底是2,垂直于底邊的腰是2,一條側(cè)棱與底面垂直,這條側(cè)棱長是2.四棱錐的體積是.故選D.【點睛】本題考查由三視圖求幾何體的體積,由三視圖求幾何體的體積,關鍵是由三視圖還原幾何體,同時還需掌握求體積的常用技巧如:割補法和等價轉(zhuǎn)化法.8、C【解析】

先由表示圓可得,然后將點代入不等式即可解得答案【詳解】由表示圓可得,即因為點在圓外所以,即綜上:a的取值范圍是故選:C【點睛】點與圓的位置關系(1)在圓外(2)在圓上(3)在圓內(nèi)9、A【解析】

分別當截面平行于正方體的一個面時,當截面過正方體的兩條相交的體對角線時,當截面既不過體對角線也不平行于任一側(cè)面時,進行判定,即可求解.【詳解】由題意,當截面平行于正方體的一個面時得③;當截面過正方體的兩條相交的體對角線時得④;當截面既不過正方體體對角線也不平行于任一側(cè)面時可能得①;無論如何都不能得②.故選A.【點睛】本題主要考查了正方體與球的組合體的截面問題,其中解答中熟記空間幾何體的結(jié)構(gòu)特征是解答此類問題的關鍵,著重考查了空間想象能力,以及推理能力,屬于基礎題.10、B【解析】

根據(jù)程序框圖依次計算得到答案.【詳解】結(jié)束,輸出故答案選B【點睛】本題考查了程序框圖的計算,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設等比數(shù)列、、、的公比為,由和計算出的取值范圍,再由可得出的取值范圍.【詳解】設等比數(shù)列、、、的公比為,,,,所以,,,.所以,,故答案為:.【點睛】本題考查等比數(shù)列通項公式及其性質(zhì),解題的關鍵就是利用已知條件求出公比的取值范圍,考查運算求解能力,屬于中等題.12、【解析】

在分式的分子和分母中同時除以,然后利用常見的數(shù)列極限可計算出所求極限值.【詳解】.故答案為:.【點睛】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列極限是解題的關鍵,考查計算能力,屬于基礎題.13、【解析】

利用對立事件概率計算公式和相互獨立事件概率乘法公式能求出至少有一發(fā)擊中靶心的概率.【詳解】甲、乙兩名新戰(zhàn)土組成戰(zhàn)術小組進行射擊訓練,單發(fā)射擊時,甲戰(zhàn)士擊中靶心的概率為0.8,乙戰(zhàn)士擊中靶心的概率為0.5,兩人射擊的情況互不影響若兩人各單發(fā)射擊一次,則至少有一發(fā)擊中靶心的概率是:.故答案為0.1.【點睛】本題考查概率的求法,考查對立事件概率計算公式和相互獨立事件概率乘法公式等基礎知識,考查運算求解能力,屬于基礎題.14、【解析】

根據(jù)遞推公式利用數(shù)學歸納法分析出與的關系,然后考慮將的前項按要求排列,再根據(jù)項的序號計算出滿足的值即可.【詳解】由已知,a1=a,0<a<1;并且函數(shù)y=ax單調(diào)遞減;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……當為奇數(shù)時,用數(shù)學歸納法證明,當時,成立,設時,,當時,因為,結(jié)合的單調(diào)性,所以,所以即,所以時成立,所以為奇數(shù)時,;當為偶數(shù)時,用數(shù)學歸納法證明,當時,成立,設時,,當時,因為,結(jié)合的單調(diào)性,所以,所以即,所以時成立,所以為偶數(shù)時,;用數(shù)學歸納法證明:任意偶數(shù)項大于相鄰的奇數(shù)項即證:當為奇數(shù),,當時,符合,設時,,當時,因為,結(jié)合的單調(diào)性,所以,所以,所以,所以時成立,所以當為奇數(shù)時,,據(jù)此可知:,當時,若,則有,此時無解;當時,此時的下標成首項為公差為的等差數(shù)列,通項即為,若,所以,所以.故答案為:.【點睛】本題考查數(shù)列與函數(shù)的綜合應用,難度較難.(1)分析數(shù)列的單調(diào)性時,要注意到數(shù)列作為特殊的函數(shù),其定義域為;(2)證明數(shù)列的單調(diào)性可從與的關系入手分析.15、4或1024【解析】

當時得到,當時,代入公式計算得到,得到答案.【詳解】比數(shù)列的前項和為,當時:易知,代入驗證,滿足,故當時:故答案為:4或1024【點睛】本題考查了等比數(shù)列,忽略掉的情況是容易發(fā)生的錯誤.16、【解析】

首先根據(jù)坐標求出三棱錐的體積,再計算出球的體積即可.【詳解】有題知建立空間直角坐標系,如圖所示由圖知:平面,...故答案為:【點睛】本題主要考查三棱錐的外接球,根據(jù)題意建立空間直角坐標系為解題的關鍵,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)c=7或c=2.(1)=2sinθ+2【解析】試題分析:(Ⅰ)由題意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等變形得c1-9c+14=0,再結(jié)合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周長f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函數(shù)的定義域和值域,求得f(θ)取得最大值.試題解析:(Ⅰ)∵a、b、c成等差,且公差為1,∴a=c-4、b=c-1.又因∠MCN=π,,可得,恒等變形得c1-9c+14=0,解得c=2,或c=1.又∵c>4,∴c=2.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周長f(θ)=|AC|+|BC|+|AB|=,又,當,即時,f(θ)取得最大值.考點:1.余弦定理;1.正弦定理18、(1)見解析;(2)乙機床加工的零件更符合要求.【解析】

(1)直接由平均數(shù)和方差的計算公式代入數(shù)據(jù)進行計算即可.

(2)由平均數(shù)和方差各自說明數(shù)據(jù)的特征,做出判斷.【詳解】(1),,,.(2)因為,,說明甲、乙機床加工的零件的直徑長度的平均值相同.且甲機床加工的零件的直徑長度波動比較大,

因此乙機床加工的零件更符合要求.【點睛】本題考查計算數(shù)據(jù)的平均數(shù)和方差以及根據(jù)數(shù)據(jù)的平均數(shù)和方差做出相應的判斷,屬于基礎題.19、(1)或;(2).【解析】試題分析:(1)設直線方程點斜式,再根據(jù)圓心到直線距離等于半徑求斜率;最后驗證斜率不存在情況是否滿足題意(2)先求點的軌跡:為圓,再根據(jù)點到圓上點距離關系確定最值試題解析:(1)當過點直線的斜率不存在時,其方程為,滿足條件.當切線的斜率存在時,設:,即,圓心到切線的距離等于半徑3,,解得.切線方程為,即故所求直線的方程為或.(2)由題意可得,點的軌跡是以為直徑的圓,記為圓.則圓的方程為.從而,所以線段長度的最大值為,最小值為,所以線段長度的取值范圍為.20、(1)(2)見證明【解析】

(1)根據(jù)已知條件得到關于的方程組,解方程組得的值,即得數(shù)列的通項公式;(2)先求出,,再利用裂項相消法求,不等式即得證.【詳解】(1)設公比為,,,成等差數(shù)列,可得,即,解得(舍去),或,又,解得所以.(2)故,得【點睛】本題主要考查等比數(shù)列通項的求法,考查等差數(shù)列前n項和的求法,考查裂項相消法求和,意在考查學生對這些知識的理解掌握水平,屬于基礎題.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論