安徽省屯溪一中2025屆高一數(shù)學第二學期期末檢測試題含解析_第1頁
安徽省屯溪一中2025屆高一數(shù)學第二學期期末檢測試題含解析_第2頁
安徽省屯溪一中2025屆高一數(shù)學第二學期期末檢測試題含解析_第3頁
安徽省屯溪一中2025屆高一數(shù)學第二學期期末檢測試題含解析_第4頁
安徽省屯溪一中2025屆高一數(shù)學第二學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省屯溪一中2025屆高一數(shù)學第二學期期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設甲、乙兩地的距離為a(a>0),小王騎自行車以勻速從甲地到乙地用了20分鐘,在乙地休息10分鐘后,他又以勻速從乙地返回到甲地用了30分鐘,則小王從出發(fā)到返回原地所經過的路程y和其所用的時間x的函數(shù)圖象為()A. B.C. D.2.過點作圓的切線,且直線與平行,則與間的距離是()A. B. C. D.3.設非零向量,滿足,則()A. B. C.// D.4.如圖是某個正方體的平面展開圖,,是兩條側面對角線,則在該正方體中,與()A.互相平行 B.異面且互相垂直 C.異面且夾角為 D.相交且夾角為5.已知α、β為銳角,cosα=,tan(α?β)=?,則tanβ=()A. B.3 C. D.6.已知向量,滿足,,且在方向上的投影是-1,則實數(shù)()A.1 B.-1 C.2 D.-27.已知點A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是()A.(0,1) B. C. D.8.已知角滿足,,且,,則的值為()A. B. C. D.9.在中,,則等于()A. B. C. D.10.將函數(shù)的圖像向右平衡個單位長度,再把圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)的最大值為 B.函數(shù)的最小正周期為C.函數(shù)的圖象關于直線對稱 D.函數(shù)在區(qū)間上單調遞增二、填空題:本大題共6小題,每小題5分,共30分。11.一個封閉的正三棱柱容器,該容器內裝水恰好為其容積的一半(如圖1,底面處于水平狀態(tài)),將容器放倒(如圖2,一個側面處于水平狀態(tài)),這時水面與各棱交點分別為E,F(xiàn)、,,則的值是__________.12.方程,的解集是__________.13.已知,,,若,則__________.14.半徑為的圓上,弧長為的弧所對圓心角的弧度數(shù)為________.15.某幼兒園對兒童記憶能力的量化評價值和識圖能力的量化評價值進行統(tǒng)計分析,得到如下數(shù)據(jù):468103568由表中數(shù)據(jù),求得回歸直線方程中的,則.16.已知橢圓的右焦點為,過點作圓的切線,若兩條切線互相垂直,則_____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,,當為何值時:(1)與垂直;(2)與平行.18.等差數(shù)列,等比數(shù)列,,,如果,(1)求的通項公式(2),求的最大項的值(3)將化簡,表示為關于的函數(shù)解析式19.已知,且為第二象限角.(Ⅰ)求的值;(Ⅱ)求的值.20.在中,內角A、B、C所對的邊分別為,,,已知.(Ⅰ)求角B的大小;(Ⅱ)設,,求.21.已知圓過點,且與圓關于直線:對稱.(1)求圓的標準方程;(2)設為圓上的一個動點,求的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:根據(jù)題意,甲、乙兩地的距離為a(a>0),小王騎自行車以勻速從甲地到乙地用了20min,在乙地休息10min后,他又以勻速從乙地返回到甲地用了30min,那么可知先是勻速運動,圖像為直線,然后再休息,路程不變,那么可知時間持續(xù)10min,那么最后還是同樣的勻速運動,直線的斜率不變可知選D.考點:函數(shù)圖像點評:主要是考查了路程與時間的函數(shù)圖像的運用,屬于基礎題.2、D【解析】由題意知點在圓C上,圓心坐標為,所以,故切線的斜率為,所以切線方程為,即.因為直線l與直線平行,所以,解得,所以直線的方程是-4x+3y-8=0,即4x-3y+8=0.所以直線與直線l間的距離為.選D.3、A【解析】

根據(jù)與的幾何意義可以判斷.【詳解】由的幾何意義知,以向量,為鄰邊的平行四邊形為矩形,所以.故選:A.【點睛】本題考查向量的加減法的幾何意義,同時,本題也可以兩邊平方,根據(jù)數(shù)量積的運算推出結論.4、D【解析】

先將平面展開圖還原成正方體,再判斷求解.【詳解】將平面展開圖還原成正方體如圖所示,則B,C兩點重合,所以與相交,連接,則為正三角形,所以與的夾角為.故選D.【點睛】本題主要考查空間直線的位置關系,意在考查學生對該知識的理解掌握水平和分析推理能力.5、B【解析】

利用角的關系,再利用兩角差的正切公式即可求出的值.【詳解】因為,且為銳角,則,所以,因為,所以故選B.【點睛】主要考查了兩角差的正切公式,同角三角函數(shù)的平方關系,屬于中檔題.對于給值求值問題,關鍵是尋找已知角(條件中的角)與未知角(問題中的角)的關系,用已知角表示未知角,從而將問題轉化為求已知角的三角函數(shù)值,再利用兩角和與差的三角函數(shù)公式、二倍角公式以及誘導公式即可求出.6、A【解析】

由投影的定義計算.【詳解】由題意,解得.故選:A.【點睛】本題考查向量數(shù)量積的幾何意義,掌握向量投影的定義是解題關鍵.7、B【解析】

先求得直線y=ax+b(a>0)與x軸的交點為M(,0),由0可得點M在射線OA上.求出直線和BC的交點N的坐標,①若點M和點A重合,求得b;②若點M在點O和點A之間,求得b;③若點M在點A的左側,求得b>1.再把以上得到的三個b的范圍取并集,可得結果.【詳解】由題意可得,三角形ABC的面積為1,由于直線y=ax+b(a>0)與x軸的交點為M(,0),由直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,可得b>0,故0,故點M在射線OA上.設直線y=ax+b和BC的交點為N,則由可得點N的坐標為(,).①若點M和點A重合,如圖:則點N為線段BC的中點,故N(,),把A、N兩點的坐標代入直線y=ax+b,求得a=b.②若點M在點O和點A之間,如圖:此時b,點N在點B和點C之間,由題意可得三角形NMB的面積等于,即,即,可得a0,求得b,故有b.③若點M在點A的左側,則b,由點M的橫坐標1,求得b>a.設直線y=ax+b和AC的交點為P,則由求得點P的坐標為(,),此時,由題意可得,三角形CPN的面積等于,即?(1﹣b)?|xN﹣xP|,即(1﹣b)?||,化簡可得2(1﹣b)2=|a2﹣1|.由于此時b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.兩邊開方可得(1﹣b)1,∴1﹣b,化簡可得b>1,故有1b.綜上可得b的取值范圍應是,故選B.【點睛】本題主要考查確定直線的要素,點到直線的距離公式以及三角形的面積公式的應用,還考查了運算能力以及綜合分析能力,分類討論思想,屬于難題.8、D【解析】

根據(jù)角度范圍先計算和,再通過展開得到答案.【詳解】,,故答案選D【點睛】本題考查了三角函數(shù)恒等變換,將是解題的關鍵.9、D【解析】

先根據(jù)向量的夾角公式計算出的值,然后再根據(jù)同角的三角函數(shù)的基本關系即可求解出的值.【詳解】因為,所以,所以,所以.故選:D.【點睛】本題考查坐標形式下向量的夾角計算,難度較易.注意:的夾角并不是,而應是的補角.10、C【解析】

根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得到g(x)的解析式,再利用正弦函數(shù)的圖象性質,得出結論.【詳解】將函數(shù)的圖象向右平移個單位長度,可得y=2sin(2x)的圖象,再把圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)g(x)=2sin(x)的圖象,故g(x)的最大值為2,故A錯誤;顯然,g(x)的最小正周期為2π,故B錯誤;當時,g(x)=,是最小值,故函數(shù)g(x)的圖象關于直線對稱,故C正確;在區(qū)間上,x∈[,],函數(shù)g(x)=2sin(x)單調遞減,故D錯誤,故選:C.【點睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象性質應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設,則,由題意得:,由此能求出的值.【詳解】設,則,由題意得:,解得,.故答案為:.【點睛】本題考查兩線段比值的求法、三棱柱的體積等基礎知識,考查運算求解能力,是中檔題.12、【解析】

用正弦的二倍角公式展開,得到,分兩種情況討論得出結果.【詳解】解:即,即:或.①由,,得.②由,,得或.綜上可得方程,的解集是:故答案為【點睛】本題考查正弦函數(shù)的二倍角公式,以及特殊角的正余弦值.13、-3【解析】由可知,解得,14、【解析】

根據(jù)弧長公式即可求解.【詳解】由弧長公式可得故答案為:【點睛】本題主要考查了弧長公式的應用,屬于基礎題.15、-0.1【解析】

分別求出和的均值,代入線性回歸方程即可.【詳解】由表中數(shù)據(jù)易得,,由在直線方程上,可得【點睛】此題考查線性回歸方程形式,表示在回歸直線上代入即可,屬于簡單題目.16、【解析】

首先分析直線與圓的位置關系,然后結合已知可判斷四邊形的形狀,得出的比值,最后得到答案.【詳解】設切點為,根據(jù)已知兩切線垂直,四邊形是正方形,,根據(jù),可得.故填:.【點睛】本題考查了直線與圓的幾何性質,以及橢圓的性質,考查了轉化與化歸的能力,屬于基礎題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

根據(jù)向量坐標運算計算得到與的坐標(1)由垂直關系得到數(shù)量積為,可構造方程求得;(2)由向量平行的坐標表示可構造方程求得.【詳解】,(1)由與垂直得:,解得:(2)由與平行得:,解得:【點睛】本題考查平面向量平行和垂直的坐標表示;關鍵是能夠明確兩向量垂直可得;兩向量平行可得.18、(1)(2)(3)【解析】

(1)設等比數(shù)列的公比為,運用等比數(shù)列的通項公式,解方程可得公比,即可得到所求;(2)判斷的單調性,可得所求最大值;(3)討論當時,當時,由分組求和,以及等差數(shù)列和等比數(shù)列的求和公式,計算可得所求和.【詳解】(1)設等比數(shù)列的公比為,,,由,,可得,,解得:,數(shù)列的通項公式:.(2)由題意得,,當時,遞增;當時,遞減;由,可得的最大項的值為.(3)由題意得,當時,;當時,綜上函數(shù)解析式【點睛】本題考查等差數(shù)列和等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的分組求和,考查化簡運算能力,屬于中檔題.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由已知利用同角三角函數(shù)基本關系式可求,利用誘導公式,二倍角公式即可計算得解;(Ⅱ)由已知利用二倍角的余弦函數(shù)公式可求cos2α的值,根據(jù)同角三角函數(shù)基本關系式可求tan2α的值,根據(jù)兩角和的正切函數(shù)公式即可計算得解.【詳解】(Ⅰ)由已知,得,∴.(Ⅱ)∵,得,∴.【點睛】本題主要考查了同角三角函數(shù)基本關系式,誘導公式,二倍角公式,兩角和的正切函數(shù)公式在三角函數(shù)化簡求值中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)在△ABC中,利用正弦定理及其.可得,利用和差公式化簡整理可得B.(Ⅱ)在△ABC中,利用余弦定理即可得出b.【詳解】(Ⅰ)在△ABC中,由正弦定理,又.可得,∴sinBcosBsinB,則.又∵B∈(0,π),可得.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,,∴b2=a2+c2﹣2accosB=4+9﹣2×2×3×co

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論