版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆四川省眉山市仁壽第一中學(xué)校北校區(qū)數(shù)學(xué)高一下期末檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.同時拋擲兩個骰子,則向上的點數(shù)之和是的概率是()A. B. C. D.2.將正整數(shù)按第組含個數(shù)分組:那么所在的組數(shù)為()A. B. C. D.3.在平面直角坐標(biāo)系中,圓:,圓:,點,動點,分別在圓和圓上,且,為線段的中點,則的最小值為A.1 B.2 C.3 D.44.若樣本數(shù)據(jù),,…,的方差為2,則數(shù)據(jù),,…,的方差為()A.4 B.8 C.16 D.325.設(shè)是△所在平面上的一點,若,則的最小值為A. B. C. D.6.設(shè)等比數(shù)列的前項和為,若,公比,則的值為()A.15 B.16 C.30 D.317.一條光線從點射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或 C.或 D.或8.已知數(shù)列的前項和為,且,若,,則的值為()A.15 B.16 C.17 D.189.已知圓,直線,點在直線上.若存在圓上的點,使得(為坐標(biāo)原點),則的取值范圍是A. B. C. D.10.某公司在甲、乙、丙、丁四個地區(qū)分別有150,120,180,150個銷售點.公司為了調(diào)查產(chǎn)品銷售情況,需從這600個銷售點中抽取一個容量為100的樣本.記這項調(diào)查為①;在丙地區(qū)有20個大型銷售點,要從中抽取7個調(diào)查其銷售收入和售后服務(wù)等情況,記這項調(diào)查為②,則完成①,②這兩項調(diào)查宜采用的抽樣方法依次是()A.分層抽樣法,系統(tǒng)抽樣法 B.分層抽樣法,簡單隨機抽樣法C.系統(tǒng)抽樣法,分層抽樣法 D.簡單隨機抽樣法,分層抽樣法二、填空題:本大題共6小題,每小題5分,共30分。11.某次體檢,6位同學(xué)的身高(單位:米)分別為1.72,1.78,1.75,1.80,1.69,1.77則這組數(shù)據(jù)的中位數(shù)是_________(米).12.已知函數(shù).利用課本中推導(dǎo)等差數(shù)列的前項和的公式的方法,可求得的值為_____.13.不共線的三個平面向量,,兩兩所成的角相等,且,,則__________.14.中,若,,,則的面積______.15.設(shè)數(shù)列滿足,,且,用表示不超過的最大整數(shù),如,,則的值用表示為__________.16.在銳角△中,角所對應(yīng)的邊分別為,若,則角等于________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角、、的對邊分別為、、,且.(1)求角的大?。唬?)若,求的最大值及相應(yīng)的角的余弦值.18.求值:(1)一個扇形的面積為1,周長為4,求圓心角的弧度數(shù);(2)已知,計算.19.已知數(shù)列的前n項和為,且,求數(shù)列的通項公式.20.某服裝店為慶祝開業(yè)“三周年”,舉行為期六天的促銷活動,規(guī)定消費達到一定標(biāo)準(zhǔn)的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,第五天該服裝店經(jīng)理對前五天中參加抽獎活動的人數(shù)進行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:1234546102322(1)若與具有線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(2)預(yù)測第六天的參加抽獎活動的人數(shù)(按四舍五入取到整數(shù)).參考公式與參考數(shù)據(jù):.21.在中,內(nèi)角、、所對的邊分別為,,,且滿足.(1)求角的大小;(2)若,是方程的兩根,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由題意可知,基本事件總數(shù)為,然后列舉出事件“同時拋擲兩個骰子,向上的點數(shù)之和是”所包含的基本事件,利用古典概型的概率公式可計算出所求事件的概率.【詳解】同時拋擲兩個骰子,共有個基本事件,事件“同時拋擲兩個骰子,向上的點數(shù)之和是”所包含的基本事件有:、、、、,共個基本事件.因此,所求事件的概率為.故選:C.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎(chǔ)題.2、B【解析】
觀察規(guī)律,看每一組的最后一個數(shù)與組數(shù)的關(guān)系,可知第n組最后一個數(shù)是2+3+4+…..+n+1=,然后再驗證求解.【詳解】觀察規(guī)律,第一組最后一個數(shù)是2=2,第二組最后一個數(shù)是5=2+3,第三組最后一個數(shù)是9=2+3+4,……,依此,第n組最后一個數(shù)是2+3+4+…..+n+1=.當(dāng)時,,所以所在的組數(shù)為63.故選:B【點睛】本題主要考查了數(shù)列的遞推,還考查了推理論證的能力,屬于中檔題.3、A【解析】
由得,根據(jù)向量的運算和兩點間的距離公式,求得點的軌跡方程,再利用點與圓的位置關(guān)系,即可求解的最小值,得到答案.【詳解】設(shè),,,由得,即,由題意可知,MN為Rt△AMB斜邊上的中線,所以,則又由,則,可得,化簡得,∴點的軌跡是以為圓心、半徑等于的圓C3,∵M在圓C3內(nèi),∴MN的最小值即是半徑減去M到圓心的距離,即,故選A.【點睛】本題主要考查了圓的方程及性質(zhì)的應(yīng)用,以及點圓的最值問題,其中解答中根據(jù)圓的性質(zhì),求得點的軌跡方程,再利用點與圓的位置關(guān)系求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.4、B【解析】
根據(jù),則即可求解.【詳解】因為樣本數(shù)據(jù),,…,的方差為2,所以,,…,的方差為,故選B.【點睛】本題主要考查了方差的概念及求法,屬于容易題.5、C【解析】分析:利用向量的加法運算,設(shè)的中點為D,可得,利用數(shù)量積的運算性質(zhì)可將原式化簡為,為AD中點,從而得解.詳解:由,可得.設(shè)的中點為D,即.點P是△ABC所在平面上的任意一點,為AD中點.∴.當(dāng)且僅當(dāng),即點與點重合時,有最小值.故選C.點睛:(1)應(yīng)用平面向量基本定理表示向量的實質(zhì)是利用平行四邊形法則或三角形法則進行向量的加、減或數(shù)乘運算.(2)用向量基本定理解決問題的一般思路是:先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.6、A【解析】
直接利用等比數(shù)列前n項和公式求.【詳解】由題得.故選A【點睛】本題主要考查等比數(shù)列求和,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.7、C【解析】
由題意可知:點在反射光線上.設(shè)反射光線所在的直線方程為:,利用直線與圓的相切的性質(zhì)即可得出.【詳解】由題意可知:點在反射光線上.設(shè)反射光線所在的直線方程為:,即.由相切的性質(zhì)可得:,化為:,解得或.故選.【點睛】本題考查了直線與圓相切的性質(zhì)、點到直線的距離公式、光線反射的性質(zhì),考查了推理能力與計算能力,屬于中檔題.8、B【解析】
推導(dǎo)出數(shù)列是等差數(shù)列,由解得,由此利用能求出的值.【詳解】數(shù)列的前項和為,且數(shù)列是等差數(shù)列解得解得故選:【點睛】本題考查等差數(shù)列的判定和基本量的求解,屬于基礎(chǔ)題.9、B【解析】
根據(jù)條件若存在圓C上的點Q,使得為坐標(biāo)原點),等價即可,求出不等式的解集即可得到的范圍【詳解】圓O外有一點P,圓上有一動點Q,在PQ與圓相切時取得最大值.
如果OP變長,那么可以獲得的最大值將變小.可以得知,當(dāng),且PQ與圓相切時,,
而當(dāng)時,Q在圓上任意移動,存在恒成立.
因此滿足,就能保證一定存在點Q,使得,否則,這樣的點Q是不存在的,
點在直線上,,即
,
,
計算得出,,
的取值范圍是,
故選B.考點:正弦定理、直線與圓的位置關(guān)系.10、B【解析】
此題為抽樣方法的選取問題.當(dāng)總體中個體較少時宜采用簡單隨機抽樣法;當(dāng)總體中的個體差異較大時,宜采用分層抽樣;當(dāng)總體中個體較多時,宜采用系統(tǒng)抽樣.【詳解】依據(jù)題意,第①項調(diào)查中,總體中的個體差異較大,應(yīng)采用分層抽樣法;第②項調(diào)查總體中個體較少,應(yīng)采用簡單隨機抽樣法.
故選B.【點睛】本題考查隨機抽樣知識,屬基本題型、基本概念的考查.二、填空題:本大題共6小題,每小題5分,共30分。11、1.76【解析】
將這6位同學(xué)的身高按照從低到高排列為:1.69,1.72,1.75,1.77,1.78,1.80,這六個數(shù)的中位數(shù)是1.75與1.77的平均數(shù),顯然為1.76.【考點】中位數(shù)的概念【點睛】本題主要考查中位數(shù)的概念,是一道基礎(chǔ)題目.從歷年高考題目看,涉及統(tǒng)計的題目,往往不難,主要考查考生的視圖、用圖能力,以及應(yīng)用數(shù)學(xué)解決實際問題的能力.12、1.【解析】
由題意可知:可以計算出的值,最后求出的值.【詳解】設(shè),,所以有,因為,因此【點睛】本題考查了數(shù)學(xué)閱讀能力、知識遷移能力,考查了倒序相加法.13、4【解析】
故答案為:4【點睛】本題主要考查向量的位置關(guān)系,考查向量模的運算的處理方法.由于三個向量兩兩所成的角相等,故它們兩兩的夾角為,由于它們的模都是已知的,故它們兩兩的數(shù)量積也可以求出來,對后平方再開方,就可以計算出最后結(jié)果.14、【解析】
利用三角形的面積公式可求出的面積的值.【詳解】由三角形的面積公式可得.故答案為:.【點睛】本題考查三角形面積的計算,熟練利用三角形的面積公式是計算的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.15、【解析】
由題設(shè)可得知該函數(shù)的最小正周期是,令,則由等差數(shù)列的定義可知數(shù)列是首項為,公差為的等差數(shù)列,即,由此可得,將以上個等式兩邊相加可得,即,所以,故,應(yīng)填答案.點睛:解答本題的關(guān)鍵是借助題設(shè)中提供的數(shù)列遞推關(guān)系式,先求出數(shù)列的通項公式,然后再運用列項相消法求出,最后借助題設(shè)中提供的新信息,求出使得問題獲解.16、【解析】試題分析:利用正弦定理化簡,得,因為,所以,因為為銳角,所以.考點:正弦定理的應(yīng)用.【方法點晴】本題主要考查了正弦定理的應(yīng)用、以及特殊角的三角函數(shù)值問題,其中解答中涉及到解三角形中的邊角互化,轉(zhuǎn)化為三角函數(shù)求值的應(yīng)用,解答中熟練掌握正弦定理的變形,完成條件的邊角互化是解答的關(guān)鍵,注重考查了分析問題和解答問題的能力,同時注意條件中銳角三角形,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)的最大值為,此時【解析】
(1)由正弦定理邊角互化思想結(jié)合內(nèi)角和定理、誘導(dǎo)公式可得出的值,結(jié)合角的取值范圍可得出角的大?。唬?)由正弦定理得出,,然后利用三角恒等變換思想將轉(zhuǎn)化為關(guān)于角的三角函數(shù),可得出的值,并求出的值.【詳解】(1)由正弦定理得,即,從而有,即,由得,因為,所以;(2)由正弦定理可知,,則有,,,其中,因為,所以,所以當(dāng)時,取得最大值,此時,所以,的最大值為,此時.【點睛】本題考查正弦定理邊角互化思想的應(yīng)用,考查內(nèi)角和定理、誘導(dǎo)公式,以及三角形中最值的求解,求解時常利用正弦定理將邊轉(zhuǎn)化為角的三角函數(shù)來求解,解題時要充分利用三角恒等變換思想將三角函數(shù)解析式化簡,考查運算求解能力,屬于中等題.18、(1);(2).【解析】
(1)設(shè)出扇形的半徑為,弧長為,利用面積、周長的值,得到關(guān)于的方程;(2)由已知條件得到,再代入所求的式子進行約分求值.【詳解】(1)設(shè)扇形的半徑為,弧長為,則解得:所以圓心角的弧度數(shù).(2)因為,所以,所以.【點睛】若三個中,只要知道其中一個,則另外兩個都可求出,即知一求二.19、【解析】
利用公式,計算的通項公式,再驗證時的情況.【詳解】當(dāng)時,;當(dāng)時,不滿足上式.∴【點睛】本題考查了利用求數(shù)列通項公式,忽略的情況是容易犯的錯誤.20、(1)(2)預(yù)測第六天的參加抽獎活動的人數(shù)為29.【解析】
(1)根據(jù)表中的數(shù)據(jù),利用公式,分別求得的值,即可得到回歸直線方程;(2)將代入回歸直線方程,求得,即可作出判斷,得到結(jié)論.【詳解】(1)根據(jù)表中的數(shù)據(jù),可得,,則,,又由,故所求回歸直線方程為.(2)將代入中,求得,故預(yù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年臨時倉儲設(shè)施租賃及管理服務(wù)合同
- 標(biāo)準(zhǔn)新工程設(shè)計合同樣本
- 2024年多人合伙共盈合同書范本
- 2024年度智能倉庫設(shè)備安裝合同
- 代銷協(xié)議書范例2024
- 全面房屋裝修合同模板集成
- 出口業(yè)務(wù)代理協(xié)議范本
- 2024物流合同范本
- 常見勞務(wù)派遣委托協(xié)議樣本
- 廣州建設(shè)工程裝修施工合同范例
- 雅魯藏布江大拐彎巨型水電站規(guī)劃方案
- 廣西基本醫(yī)療保險門診特殊慢性病申報表
- 城市經(jīng)濟學(xué)習(xí)題與答案
- 國開成本會計第14章綜合練習(xí)試題及答案
- 幼兒園大班科學(xué):《樹葉為什么會變黃》課件
- 1到50帶圈數(shù)字直接復(fù)制
- 鐵路工程施工組織設(shè)計(施工方案)編制分類
- 幼兒園中班數(shù)學(xué)《有趣的圖形》課件
- 《規(guī)劃每一天》教案2021
- 草莓創(chuàng)意主題實用框架模板ppt
- 山大口腔頜面外科學(xué)課件第5章 口腔種植外科-1概論、口腔種植的生物學(xué)基礎(chǔ)
評論
0/150
提交評論