版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
甘肅省蘭州市城關區(qū)蘭州第一中學2023-2024學年高一下數(shù)學期末經(jīng)典模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設為直線,是兩個不同的平面,下列說法中正確的是()A.若,則B.若,則C.若,則D.若,則2.若三棱錐的所有頂點都在球的球面上,平面,,,且三棱錐的體積為,則球的體積為()A. B. C. D.3.《趣味數(shù)學·屠夫列傳》中有如下問題:“戴氏善屠,日益功倍。初日屠五兩,今三十日屠訖,問共屠幾何?”其意思為:“有一個姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5兩肉,共屠了30天,問一共屠了多少兩肉?”()A. B. C. D.4.函數(shù)的單調(diào)減區(qū)間為()A.(kπ﹣,kπ],(k∈Z) B.(kπ﹣,kπ],(k∈Z)C.(kπ﹣,kπ+],(k∈Z) D.(kπ+,kπ+],(k∈Z)5.設是等差數(shù)列的前項和,若,則()A. B. C. D.6.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位7.已知中,,則角()A.60°或120° B.30°或90° C.30° D.90°8.在△ABC中,a=3,b=5,sinA=13A.15 B.59 C.9.設向量,若,則實數(shù)的值為()A.1 B.2 C.3 D.410.已知等差數(shù)列的前項和為,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列是等差數(shù)列,若,,則公差________.12.如圖所示,在正三棱柱中,是的中點,,則異面直線與所成的角為____.13.已知滿足約束條件,則的最大值為__________.14.已知四面體的四個頂點均在球的表面上,為球的直徑,,四面體的體積最大值為____15.已知方程的兩根分別為、、且,且__________.16.在中,,,,則的面積等于______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知的三個頂點,,,其外接圓為圓.(1)求圓的方程;(2)若直線過點,且被圓截得的弦長為,求直線的方程;(3)對于線段上的任意一點,若在以為圓心的圓上都存在不同的兩點,,使得點是線段的中點,求圓的半徑的取值范圍.18.如圖,在四邊形中,已知,,,,設.(1)求(用表示);(2)求的最小值.(結(jié)果精確到米)19.在中,角所對的邊分別為.(1)若,求角的大?。唬?)若是邊上的中線,求證:.20.己知,,若.(Ⅰ)求的最大值和對稱軸;(Ⅱ)討論在上的單調(diào)性.21.在中,為上的點,為上的點,且.(1)求的長;(2)若,求的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
畫出長方體,按照選項的內(nèi)容在長方體中找到相應的情況,即可得到答案【詳解】對于選項A,在長方體中,任何一條棱都和它相對的兩個平面平行,但這兩個平面相交,所以A不正確;對于選項B,若,分別是長方體的上、下底面,在下底面所在平面中任選一條直線,都有,但,所以B不正確;對于選項D,在長方體中,令下底面為,左邊側(cè)面為,此時,在右邊側(cè)面中取一條對角線,則,但與不垂直,所以D不正確;對于選項C,設平面,且,因為,所以,又,所以,又,所以,所以C正確.【點睛】本題考查直線與平面的位置關系,屬于簡單題2、A【解析】
由的體積計算得高,已知將三棱錐的外接球,轉(zhuǎn)化為長2,寬2,高的長方體的外接球,求出半徑,可得答案.【詳解】∵,,故三棱錐的底面面積為,由平面,得,又三棱錐的體積為,得,所以三棱錐的外接球,相當于長2,寬2,高的長方體的外接球,故球半徑,得,故外接球的體積.故選:A.【點睛】本題考查了三棱錐外接球的體積,三棱錐體積公式的應用,根據(jù)已知計算出球的半徑是解答的關鍵,屬于中檔題.3、D【解析】
根據(jù)題意,得到該屠戶每天屠的肉成等比數(shù)列,記首項為,公比為,前項和為,由題中熟記,以及等比數(shù)列的求和公式,即可得出結(jié)果.【詳解】由題意,該屠戶每天屠的肉成等比數(shù)列,記首項為,公比為,前項和為,所以,,因此.故選:D【點睛】本題主要考查等比數(shù)列的應用,熟記等比數(shù)列的求和公式即可,屬于基礎題型.4、C【解析】
根據(jù)復合函數(shù)的單調(diào)性,得到函數(shù)的減區(qū)間,即為的增區(qū)間,且,根據(jù)三角函數(shù)的圖象與性質(zhì),即可求解.【詳解】由題意,函數(shù)在定義域上是減函數(shù),根據(jù)復合函數(shù)的單調(diào)性,可得函數(shù)的減區(qū)間,即的增區(qū)間,且,則,得,則函數(shù)的單調(diào)遞減區(qū)間為,故選C.【點睛】本題主要考查了對數(shù)函數(shù)及三角函數(shù)的圖象與性質(zhì)的應用,其中解答中熟記對數(shù)函數(shù)的性質(zhì),以及三角函數(shù)的圖象與性質(zhì),根據(jù)復合函數(shù)的單調(diào)性進行判定是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.5、D【解析】
根據(jù)等差數(shù)列片斷和的性質(zhì)得出、、、成等差數(shù)列,并將和都用表示,可得出的值.【詳解】根據(jù)等差數(shù)列的性質(zhì),若數(shù)列為等差數(shù)列,則也成等差數(shù)列;又,則數(shù)列是以為首項,以為公差的等差數(shù)列,則,故選D.【點睛】本題考查等差數(shù)列片斷和的性質(zhì),再利用片斷和的性質(zhì)時,要注意下標之間的倍數(shù)關系,結(jié)合性質(zhì)進行求解,考查運算求解能力,屬于中等題.6、D【解析】
根據(jù)三角函數(shù)圖象的平移變換可直接得到圖象變換的過程.【詳解】因為,所以向右平移個單位即可得到的圖象.故選:D.【點睛】本題考查三角函數(shù)圖象的平移變換,難度較易.注意左右平移時對應的規(guī)律:左加右減.7、B【解析】
由正弦定理求得,再求.【詳解】由正弦定理,∴,或,時,,時,.故選:B.【點睛】本題考查正弦定理,在用正弦定理解三角形時,可能會出現(xiàn)兩解,一定要注意.8、B【解析】試題分析:由正弦定理得31考點:正弦定理的應用9、B【解析】
首先求出的坐標,再根據(jù)平面向量共線定理解答.【詳解】解:,因為,所以,解得.故選:【點睛】本題考查平面向量共線定理的應用,屬于基礎題.10、C【解析】
利用等差數(shù)列的求和公式及性質(zhì)即可得到答案.【詳解】由于,根據(jù)等差數(shù)列的性質(zhì),,故選C.【點睛】本題主要考查等差數(shù)列的性質(zhì)與求和,難度不大.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
利用等差數(shù)列的通項公式即可得出.【詳解】設等差數(shù)列公差為,∵,,∴,解得=1.故答案為:1.【點睛】本題考查了等差數(shù)列的通項公式,考查了計算能力,屬于基礎題.12、【解析】
要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點E,連AE,,易證,∴為異面直線與所成角,設等邊三角形邊長為,易算得∴在∴故答案為【點睛】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應用典型的見中點找中點的方法,注意求角的三個環(huán)節(jié),一畫,二證,三求.13、57【解析】
作出不等式組所表示的可行域,平移直線,觀察直線在軸的截距取最大值時的最優(yōu)解,再將最優(yōu)解代入目標函數(shù)可得出目標函數(shù)的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:平移直線,當直線經(jīng)過可行域的頂點時,該直線在軸上的截距取最大值,此時,取最大值,即,故答案為.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,一般利用平移直線結(jié)合在坐標軸上的截距取最值時,找最優(yōu)解求解,考查數(shù)形結(jié)合數(shù)學思想,屬于中等題.14、2【解析】
為球的直徑,可知與均為直角三角形,求出點到直線的距離為,可知點在球上的運動軌跡為小圓.【詳解】如圖所示,四面體內(nèi)接于球,為球的直徑,,,,過作于,,點在以為圓心,為半徑的小圓上運動,當面面時,四面體的體積達到最大,.【點睛】立體幾何中求最值問題,核心通過直觀想象,找到幾何體是如何變化的?本題求解的突破口在于找到點的運動軌跡,考查學生的空間想象能力和邏輯思維能力.15、【解析】
由韋達定理和兩角和的正切公式可得,進一步縮小角的范圍可得,進而可求.【詳解】方程兩根、,,,,又,,,,,,,結(jié)合,,故答案為.【點睛】本題考查兩角和與差的正切函數(shù),涉及韋達定理,屬中檔題.16、【解析】
先用余弦定理求得,從而得到,再利用正弦定理三角形面積公式求解.【詳解】因為在中,,,由余弦定理得,所以由正弦定理得故答案為:【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了運算求解的能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)或(3)【解析】
試題分析:(1)借助題設條件直接求解;(2)借助題設待定直線的斜率,再運用直線的點斜式方程求解;(3)借助題設建立關于的不等式,運用分析推證的方法進行求解.試題解析:(1)的面積為2;(2)線段的垂直平分線方程為,線段的垂直平分線方程為,所以外接圓圓心,半徑,圓的方程為,設圓心到直線的距離為,因為直線被圓截得的弦長為2,所以.當直線垂直于軸時,顯然符合題意,即為所求;當直線不垂直于軸時,設直線方程為,則,解得,綜上,直線的方程為或.(3)直線的方程為,設,,因為點是線段的中點,所以,又,都在半徑為的圓上,所以因為關于,的方程組有解,即以為圓心,為半徑的圓與以為圓心,為半徑的圓有公共點,所以,又,所以對成立.而在上的值域為,所以且.又線段與圓無公共點,所以對成立,即.故圓的半徑的取值范圍為.考點:直線與圓的位置關系等有關知識的綜合運用.18、(1);(2)米【解析】
(1)在中,由正弦定理,求得,再在中,利用正弦定理,即可求得的表達式;(2)在中,由正弦定理,求得,進而可得到,利用三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,在中,,由正弦定理,可得,即,在中,,由正弦定理,可得,即,(2)在中,由正弦定理,可得,即所以因為,所以所以當時,取得最小值最小值約為米.【點睛】本題主要考查了正弦定理、余弦定理的應用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關系,熟練掌握定理、合理運用是解本題的關鍵.通常當涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當涉及三邊或兩邊及其夾角時,運用余弦定理求解.19、(1);(2)見解析【解析】
(1)已知三邊的關系且有平方,考慮化簡式子構(gòu)成余弦定理即可。(2)觀察結(jié)論形似余弦定理,通過,則互補,則余弦值互為相反數(shù)聯(lián)系。【詳解】(1)∵,∴∴由余弦定理,得,∴∵,∴,∵,∴(2)設,,則在中,由余弦定理,得在中,同理,得∵,∴,∵,∴,∴【點睛】解三角形要注意觀察題干條件所給的形式,出現(xiàn)邊長平方一般會考慮用到余弦定理。正弦定理和余弦定理是我們解三角形的兩大常用工具,需要熟練運用。20、(1);,(2)在上單調(diào)遞增,在上單調(diào)減.【解析】
(1)先由題意得到,再化簡整理,結(jié)合三角函數(shù)的性質(zhì),即可求出結(jié)果;(2)根據(jù)三角函數(shù)的單調(diào)性,結(jié)合題中條件,即可求出結(jié)果.【詳解】(1)所以最大值為,由,,所以對稱軸,(2)當時,,從而當,即時,單調(diào)遞增
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 語文-山東省淄博市2024-2025學年第一學期高三期末摸底質(zhì)量檢測試題和答案
- 幼兒園后勤個人工作總結(jié)6篇
- 小學數(shù)學二年級加減法練習題
- 《新聞采訪和寫作》課件
- 高考語文試題分類匯編詞語運用
- 《小講課糖尿病》課件
- 《淘寶網(wǎng)用戶特征》課件
- 早餐行業(yè)客服工作總結(jié)微笑服務增添早餐味道
- 《淋病醫(yī)學》課件
- 泌尿科醫(yī)生的工作總結(jié)
- “技能興威”第一屆威海市職業(yè)技能大賽農(nóng)產(chǎn)品食品檢驗員(海洋食品產(chǎn)業(yè)鏈)賽項規(guī)程
- 幼兒園故事繪本《賣火柴的小女孩兒》課件
- 中央2024年國家藥品監(jiān)督管理局中國食品藥品檢定研究院招聘筆試歷年典型考題及考點附答案解析
- 小學語文四年級上冊單元作業(yè)整體設計案例
- DB32-T 4752-2024 一體化污水處理設備通.用技術要求
- 2024年新高考Ⅰ卷作文審題立意及寫作指導+課件
- 2024年山東臨沂市恒源熱力集團限公司高校畢業(yè)生招聘9人重點基礎提升難、易點模擬試題(共500題)附帶答案詳解
- 2024年房屋頂賬協(xié)議模板(二篇)
- 美國史智慧樹知到期末考試答案章節(jié)答案2024年東北師范大學
- 售后服務方案及運維方案
- 機加工工作計劃安排
評論
0/150
提交評論