2024屆福建省龍巖市一級達標校數(shù)學高一下期末達標檢測模擬試題含解析_第1頁
2024屆福建省龍巖市一級達標校數(shù)學高一下期末達標檢測模擬試題含解析_第2頁
2024屆福建省龍巖市一級達標校數(shù)學高一下期末達標檢測模擬試題含解析_第3頁
2024屆福建省龍巖市一級達標校數(shù)學高一下期末達標檢測模擬試題含解析_第4頁
2024屆福建省龍巖市一級達標校數(shù)學高一下期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆福建省龍巖市一級達標校數(shù)學高一下期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.中,,則()A.5 B.6 C. D.82.設雙曲線的左右焦點分別是,過的直線交雙曲線的左支于兩點,若,且,則雙曲線的離心率是()A. B. C. D.3.等差數(shù)列{}中,=2,=7,則=()A.10 B.20 C.16 D.124.如圖,網(wǎng)格紙上正方形小格邊長為,圖中粗線畫的是某幾何體的三視圖,則該幾何體的表面積等于()A.B.C.D.5.在區(qū)間上隨機地取一個數(shù),則事件“”發(fā)生的概率為()A. B. C. D.6.若關于的不等式在區(qū)間上有解,則的取值范圍是()A. B. C. D.7.要得到函數(shù)y=cos4x+πA.向左平移π3個單位長度 B.向右平移πC.向左平移π12個單位長度 D.向右平移π8.設二次函數(shù)在區(qū)間上單調(diào)遞減,且,則實數(shù)的取值范圍是()A.(-∞,0] B.[2,+∞) C.(-∞,0]∪[2,+∞) D.[0,2]9.已知數(shù)列的前項和為,且滿足,,則()A. B. C. D.10.已知正方形的邊長為,若將正方形沿對角線折疊為三棱錐,則在折疊過程中,不能出現(xiàn)()A. B.平面平面 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域為__________;12.已知函數(shù),下列說法:①圖像關于對稱;②的最小正周期為;③在區(qū)間上單調(diào)遞減;④圖像關于中心對稱;⑤的最小正周期為;正確的是________.13.平面⊥平面,,,,直線,則直線與的位置關系是___.14.三棱錐P﹣ABC的底面ABC是等腰三角形,AC=BC=2,AB=2,側面PAB是等邊三角形且與底面ABC垂直,則該三棱錐的外接球表面積為_____.15.在△ABC中,,則________.16.項數(shù)為的等差數(shù)列,若奇數(shù)項之和為88,偶數(shù)項之和為77,則實數(shù)的值為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在一個盒子中裝有6支圓珠筆,其中3支一等品,2支二等品和1支三等品,從中任取3支.求(1)恰有1支一等品的概率;(2)恰有兩支一等品的概率;(3)沒有三等品的概率.18.設平面三點、、.(1)試求向量的模;(2)若向量與的夾角為,求;(3)求向量在上的投影.19.已知函數(shù)f1當a>0時,求函數(shù)y=f2若存在m>0使關于x的方程fx=m+120.已知圓與圓:關于直線對稱.(1)求圓的標準方程;(2)已知點,若與直線垂直的直線與圓交于不同兩點、,且是鈍角,求直線在軸上的截距的取值范圍.21.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)余弦定理,可求邊長.【詳解】,代入數(shù)據(jù),化解為解得或(舍)故選D.【點睛】本題考查了已知兩邊及其一邊所對角,求另一邊,這種題型用余弦定理,屬于基礎題型.2、C【解析】,則,所以,,則,所以,故選C。點睛:離心率問題關鍵是利用圓錐曲線的幾何性質(zhì),以及三角形的幾何關系來解決,本題中,由雙曲線的幾何性質(zhì),可以將圖中的各邊長都表示出來,再利用同一個角在兩個三角形中的余弦定理,就可以得到的等量關系,求出離心率。3、D【解析】

根據(jù)等差數(shù)列的性質(zhì)可知第五項減去第三項等于公差的2倍,由=+5得到2d等于5,然后再根據(jù)等差數(shù)列的性質(zhì)得到第七項等于第五項加上公差的2倍,把的值和2d的值代入即可求出的值,即可知=,故選D.4、C【解析】

由三視圖可知該幾何體是一個四棱錐,作出圖形即可求出表面積?!驹斀狻吭搸缀误w為四棱錐,如圖..選C.【點睛】本題考查了三視圖,考查了四棱錐的表面積,考查了學生的空間想象能力與計算能力,屬于基礎題。5、A【解析】由得,,所以,由幾何概型概率的計算公式得,,故選.考點:1.幾何概型;2.對數(shù)函數(shù)的性質(zhì).6、A【解析】

利用分離常數(shù)法得出不等式在上成立,根據(jù)函數(shù)在上的單調(diào)性,求出的取值范圍【詳解】關于的不等式在區(qū)間上有解在上有解即在上成立,設函數(shù)數(shù),恒成立在上是單調(diào)減函數(shù)且的值域為要在上有解,則即的取值范圍是故選【點睛】本題是一道關于一元二次不等式的題目,解題的關鍵是掌握一元二次不等式的解法,分離含參量,然后求出結果,屬于基礎題.7、C【解析】

先化簡得y=cos【詳解】因為y=cos所以要得到函數(shù)y=cos4x+π3的圖像,只需將函數(shù)故選:C【點睛】本題主要考查三角函數(shù)的圖像的變換,意在考查學生對該知識的理解掌握水平,屬于基礎題.8、D【解析】

求出導函數(shù),題意說明在上恒成立(不恒等于0),從而得,得開口方向,及函數(shù)單調(diào)性,再由函數(shù)性質(zhì)可解.【詳解】二次函數(shù)在區(qū)間上單調(diào)遞減,則,,所以,即函數(shù)圖象的開口向上,對稱軸是直線.所以f(0)=f(2),則當時,有.【點睛】實際上對二次函數(shù),當時,函數(shù)在遞減,在上遞增,當時,函數(shù)在遞增,在上遞減.9、B【解析】

由可知,數(shù)列隔項成等比數(shù)列,從而得到結果.【詳解】由可知:當n≥2時,,兩式作商可得:∴奇數(shù)項構成以1為首項,2為公比的等比數(shù)列,偶數(shù)項構成以2為首項,2為公比的等比數(shù)列,∴故選:B【點睛】本題考查數(shù)列的遞推關系,考查隔項成等比,考查分析問題解決問題的能力,屬于中檔題.10、D【解析】對于A:取BD中點O,因為,AO所以面AOC,所以,故A對;對于B:當沿對角線折疊成直二面角時,有面平面平面,故B對;對于C:當折疊所成的二面角時,頂點A到底面BCD的距離為,此時,故C對;對于D:若,因為,面ABC,所以,而,即直角邊長與斜邊長相等,顯然不對;故D錯;故選D點睛:本題考查了立體幾何中折疊問題,要分析清楚折疊前后的變化量與不變量以及線線與線面的位置關系,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)偶次被開方數(shù)大于等于零,分母不為零,列出不等式組,解出即可.【詳解】依題意可得,,解得即,故函數(shù)的定義域為.故答案為:.【點睛】本題主要考查函數(shù)定義域的求法,涉及三角不等式的解法,屬于基礎題.12、②③⑤【解析】

將函數(shù)解析式改寫成:,即可作出函數(shù)圖象,根據(jù)圖象即可判定.【詳解】由題:,,所以函數(shù)為奇函數(shù),,是該函數(shù)的周期,結合圖象分析是其最小正周期,,作出函數(shù)圖象:可得,該函數(shù)的最小正周期為,圖像不關于對稱;在區(qū)間上單調(diào)遞減;圖像不關于中心對稱;故答案為:②③⑤【點睛】此題考查三角函數(shù)圖象及其性質(zhì)的辨析,涉及周期性,對稱性和單調(diào)性,作為填空題,恰當?shù)乩脠D象解決問題能夠起到事半功倍的作用.13、【解析】

利用面面垂直的性質(zhì)定理得到平面,又直線,利用線面垂直性質(zhì)定理得.【詳解】在長方體中,設平面為平面,平面為平面,直線為直線,由于,,由面面垂直的性質(zhì)定理可得:平面,因為,由線面垂直的性質(zhì)定理,可得.【點睛】空間中點、線、面的位置關系問題,一般是利用線面平行或垂直的判定定理或性質(zhì)定理進行求解.14、【解析】

求出的外接圓半徑,的外接圓半徑,求出外接球的半徑,即可求出該三棱錐的外接球的表面積.【詳解】由題意,設的外心為,的外心為,則的外接圓半徑,在中,因為,由余弦定理可得,所以,所以的外接圓半徑,在等邊中,由,所以,所以,設球心為,球的半徑為,則,又由面,面,則,所以該三棱錐的外接球的表面積為.故答案為:.【點睛】本題主要考查了三棱錐的外接球的表面積的求解,其中解答中熟練應用空間幾何體的結構特征,確定球的半徑是解答的關鍵,著重考查了空間想象能力,以及推理與運算能力,屬于中檔試題.15、【解析】

因為所以注意到:故.故答案為:16、7【解析】

奇數(shù)項和偶數(shù)項相減得到和,故,代入公式計算得到答案.【詳解】由題意知:,前式減后式得到:,后式減前式得到故:解得故答案為:7【點睛】本題考查了等差數(shù)列的奇數(shù)項和與偶數(shù)項和關系,通過變換得到是解題的關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】

(1)恰有一支一等品,從3支一等品中任取一支,從二、三等品種任取兩支利用分布乘法原理計算后除以基本事件總數(shù);(2)恰有兩枝一等品,從3支一等品中任取兩支,從二、三等品種任取一支利用分布乘法原理計算后除以基本事件總數(shù);(3)從5支非三等品中任取三支除以基本事件總數(shù).【詳解】(1)恰有一枝一等品的概率;(2)恰有兩枝一等品的概率;(3)沒有三等品的概率.【點睛】本題考查古典概型及其概率計算公式,考查邏輯思維能力和運算能力,屬于??碱}.18、(1);(2);(3).【解析】

(1)計算出、的坐標,可計算出的坐標,再利用平面向量模長的坐標表示可計算出向量的模;(2)由可計算出的值;(3)由投影的定義得出向量在上的投影為可計算出結果.【詳解】(1)、、,,,因此,;(2)由(1)知,,,所以;(3)由(2)知向量與的夾角的余弦為,且.所以向量在上的投影為.【點睛】本題考查平面向量的坐標運算以及平面向量夾角的坐標表示、以及向量投影的計算,解題時要熟悉平面向量坐標的運算律以及平面向量數(shù)量積、模、夾角的坐標運算,考查計算能力,屬于基礎題.19、(1)見解析;(2)a<-3-2【解析】

(1)將問題轉化為解不等式ax2-a+1x+1≥0,即ax-1x-1≥0(2)t=m+1m≥2,將問題轉化為:關于x的方程ax2【詳解】(1)由題意,fx=ax解方程ax-1x-1=0,得x1①當1a>1時,即當0<a<1時,解不等式ax-1x-1≥0,得此時,函數(shù)y=fx的定義域為②當1a=1時,即當a=1時,解不等式x-12此時,函數(shù)y=fx的定義域為③當1a<1時,即當a>1時,解不等式ax-1x-1≥0,解得此時,函數(shù)y=fx的定義域為(2)令t=m+1則關于x的方程fx=t有四個不同的實根可化為即ax2-解得a<-3-2【點睛】本題考查含參不等式的求解,考查函數(shù)的零點個數(shù)問題,在求解含參不等式時,找出分類討論的基本依據(jù),在求解二次函數(shù)的零點問題時,應結合圖形找出等價條件,通過列不等式組來求解,考查分類討論數(shù)學思想以及轉化與化歸數(shù)學思想,屬于中等題。20、(1);(2)【解析】

(1)根據(jù)兩圓對稱,直徑一樣,只需圓心對稱即可得圓C的標準方程;(2)設直線l的方程為y=﹣x+m與圓C聯(lián)立方程組,利用韋達定理,設而不求的思想即可求解b范圍,即截距的取值范圍.【詳解】(1)圓的圓心坐標為,半徑為2設圓的圓心坐標為,由題意可知解得:由對稱性質(zhì)可得,圓的半徑為2,所以圓的標準方程為:(2)設直線的方程為,聯(lián)立得:,設直線與圓的交點,,由,得,(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論