




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
內(nèi)蒙古自治區(qū)錫林郭勒盟太仆寺旗寶昌鎮(zhèn)第一中學2024屆數(shù)學高一下期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則的最小值是()A.2 B.6 C.2 D.22.已知函數(shù),,的零點分別為a,b,c,則()A. B. C. D.3.向量,,,滿足條件.,則A. B. C. D.4.已知都是正數(shù),且,則的最小值等于A. B.C. D.5.我國著名數(shù)學家華羅庚先生曾說:數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休,在數(shù)學的學習和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征,如函數(shù)的部分圖象大致是()A. B.C. D.6.已知,,,則a,b,c的大小關系為()A. B. C. D.7.若,,那么在方向上的投影為()A.2 B. C.1 D.8.已知實數(shù)滿足,那么的最小值為(
)A. B. C. D.9.已知,,,若點是所在平面內(nèi)一點,且,則的最大值等于().A. B. C. D.10.己知,,若軸上方的點滿足對任意,恒有成立,則點縱坐標的最小值為()A. B. C.1 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.若直線y=x+m與曲線x=恰有一個公共點,則實數(shù)m的取值范圍是______.12.在中,若,則等于__________.13.函數(shù)單調(diào)遞減區(qū)間是.14.直線x-315.已知等邊三角形的邊長為2,點P在邊上,點Q在邊的延長線上,若,則的最小值為______.16.已知直線是函數(shù)(其中)圖象的一條對稱軸,則的值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,是函數(shù)的兩個相鄰的零點.(1)求;(2)若對任意,都有,求實數(shù)的取值范圍.(3)若關于的方程在上有兩個不同的解,求實數(shù)的取值范圍.18.設等差數(shù)列的前n項和為,,.(1)求;(2)設,求數(shù)列的前n項和.19.大豆,古稱菽,原產(chǎn)中國,在中國已有五千年栽培歷史.2019年春,為響應中國大豆參與世界貿(mào)易的競爭,某市農(nóng)科院積極研究,加大優(yōu)良品種的培育工作,其中一項基礎工作就是研究晝夜溫差大小與大豆發(fā)芽率之間的關系.為此科研人員分別記錄了7天中每天50粒大豆的發(fā)芽數(shù)得如下數(shù)據(jù)表格:日期4月3日4月4日4月5日4月6日4月7日4月8日4月9日溫差(℃)89101211813發(fā)芽數(shù)(粒)21252632272033科研人員確定研究方案是:從7組數(shù)據(jù)中選5組數(shù)據(jù)求線性回歸方程,再用求得的回歸方程對剩下的2組數(shù)據(jù)進行檢驗.(1)若選取的是4月4日至4月8日五天數(shù)據(jù),據(jù)此求關于的線性回歸方程;(2)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)的誤差絕對值均不超過1粒,則認為得到的線性回歸方程是可靠的,請檢驗(1)中回歸方程是否可靠?注:.參考數(shù)值:,.20.在中,內(nèi)角的對邊分別為,且.(1)求角;(2)若,求的值.21.已知數(shù)列滿足,.(Ⅰ)求,的值,并證明:0<≤1;(Ⅱ)證明:;(Ⅲ)證明:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:因為,故.考點:基本不等式的運用,考查學生的基本運算能力.2、B【解析】
,,分別為,,的根,作出,,的圖象與直線,觀察交點的橫坐標的大小關系.【詳解】由題意可得,,分別為,,的根,作出,,,的圖象,與直線的交點的橫坐標分別為,,,由圖象可得,故選:.【點睛】本題主要考查了函數(shù)的零點,函數(shù)的圖象,數(shù)形結(jié)合思想,屬于中檔題.3、C【解析】向量,則,故解得.故答案為:C。4、C【解析】
,故選C.5、D【解析】
根據(jù)函數(shù)的性質(zhì)以及特殊位置即可利用排除法選出正確答案.【詳解】因為函數(shù)定義域為,關于原點對稱,而,所以函數(shù)為奇函數(shù),其圖象關于原點對稱,故排除A,C;又因為,故排除B.故選:D.【點睛】本題主要考查函數(shù)圖象的識別,涉及余弦函數(shù)性質(zhì)的應用,屬于基礎題.6、D【解析】
由,,,得解.【詳解】解:因為,,,所以,故選:D.【點睛】本題考查了指數(shù)冪,對數(shù)值的大小關系,屬基礎題.7、C【解析】
根據(jù)定義可知,在方向上的投影為,代入即可求解.【詳解】,,那么在方向上的投影為.故選:C.【點睛】本題考查向量數(shù)量積的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎試題.8、A【解析】
表示直線上的點到原點的距離,利用點到直線的距離公式求得最小值.【詳解】依題意可知表示直線上的點到原點的距離,故原點到直線的距離為最小值,即最小值為,故選A.【點睛】本小題主要考查點到直線的距離公式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于基礎題.9、A【解析】以為坐標原點,建立平面直角坐標系,如圖所示,則,,,即,所以,,因此,因為,所以的最大值等于,當,即時取等號.考點:1、平面向量數(shù)量積;2、基本不等式.10、D【解析】
由題意首先利用平面向量的坐標運算法則確定縱坐標的解析式,然后結(jié)合二次函數(shù)的性質(zhì)確定點P縱坐標的最小值即可.【詳解】設,則,,故,恒成立,即恒成立,據(jù)此可得:,故,當且僅當時等號成立.據(jù)此可得的最小值為,則的最小值為.即點縱坐標的最小值為2.故選D.【點睛】本題主要考查平面向量的坐標運算,二次函數(shù)最值的求解等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.二、填空題:本大題共6小題,每小題5分,共30分。11、{m|-1<m≤1或m=-}【解析】
由x=,化簡得x2+y2=1,注意到x≥0,所以這個曲線應該是半徑為1,圓心是(0,0)的半圓,且其圖象只在一、四象限.畫出圖象,這樣因為直線與其只有一個交點,由此能求出實數(shù)m的取值范圍.【詳解】由x=,化簡得x2+y2=1,注意到x≥0,所以這個曲線應該是半徑為1,圓心是(0,0)的半圓,且其圖象只在一、四象限.畫出圖象,這樣因為直線與其只有一個交點,從圖上看出其三個極端情況分別是:①直線在第四象限與曲線相切,②交曲線于(0,﹣1)和另一個點,③與曲線交于點(0,1).直線在第四象限與曲線相切時解得m=﹣,當直線y=x+m經(jīng)過點(0,1)時,m=1.當直線y=x+m經(jīng)過點(0,﹣1)時,m=﹣1,所以此時﹣1<m≤1.綜上滿足只有一個公共點的實數(shù)m的取值范圍是:﹣1<m≤1或m=﹣.故答案為:{m|-1<m≤1或m=-}.【點睛】本題考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意數(shù)形結(jié)合思想的合理運用.12、;【解析】
由條件利用三角形內(nèi)角和公式求得,再利用正弦定理即可求解.【詳解】在中,,,,即,,故答案為:【點睛】本題考查了正弦定理解三角形,需熟記定理的內(nèi)容,屬于基礎題.13、【解析】
先求出函數(shù)的定義域,找出內(nèi)外函數(shù),根據(jù)同增異減即可求出.【詳解】由,解得或,所以函數(shù)的定義域為.令,則函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又為增函數(shù),則根據(jù)同增異減得,函數(shù)單調(diào)遞減區(qū)間為.【點睛】復合函數(shù)法:復合函數(shù)的單調(diào)性規(guī)律是“同則增,異則減”,即與若具有相同的單調(diào)性,則為增函數(shù),若具有不同的單調(diào)性,則必為減函數(shù).14、π【解析】
將直線方程化為斜截式,利用直線斜率與傾斜角的關系求解即可.【詳解】因為x-3所以y=33x-33則tanα=33,α=【點睛】本題主要考查直線的斜率與傾斜角的關系,意在考查對基礎知識的掌握情況,屬于基礎題.15、【解析】
以為軸建立平面直角坐標系,設,用t表示,求其最小值即可得到本題答案.【詳解】過點A作BC的垂線,垂足為O,以為軸建立平面直角坐標系.作PM垂直BC交于點M,QH垂直y軸交于點H,CN垂直HQ交于點N.設,則,故有所以,,當時,取最小值.故答案為:【點睛】本題主要考查利用建立平面直角坐標系解決向量的取值范圍問題.16、【解析】
根據(jù)正弦函數(shù)圖象的對稱性可得,由此可得答案.【詳解】依題意得,所以,即,因為,所以或,故答案為:【點睛】本題考查了正弦函數(shù)圖象的對稱軸,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】
(1)先化簡,再根據(jù)函數(shù)的周期求出的值,從而得到的解析式;(2)將問題轉(zhuǎn)化為,根據(jù)三角函數(shù)的性質(zhì)求出的最大值,即可求出實數(shù)的取值范圍;(3)通過方程的解與函數(shù)圖象之間的交點關系,可將題意轉(zhuǎn)化為函數(shù)的圖象與直線有兩個交點,即可由圖象求出實數(shù)的取值范圍.【詳解】(1).由題意可知,的最小正周期,∴,又∵,∴,∴(2)由得,,∴,∵,∴,∴.∴,即,∴,所以(3)原方程可化為即,由,得時,,的最大值為2,∴要使方程在上有兩個不同的解,即函數(shù)的圖象與直線有兩個交點,由圖象可知,即,所以【點睛】本題主要考查三角函數(shù)的圖象與性質(zhì)的應用,以及利用二倍角公式、兩角差的余弦公式、兩角和的正弦公式進行三角恒等變換,同時還考查了轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想的應用.18、(1)(2)【解析】
(1)在等差數(shù)列中根據(jù),,可求得其首項與公差,從而可求得;(2)可證明為等比數(shù)列,利用等比數(shù)列的求和公式計算即可.【詳解】(1);(2),所以.【點睛】本題考查等比數(shù)列的前項和,著重考查等差數(shù)列的性質(zhì)與通項公式及等比數(shù)列的前項和公式,屬于基礎題.19、(1);(2)(1)中回歸方程是可靠的.【解析】
(1)運用已知題中所給的數(shù)值,結(jié)合所給的計算公式、數(shù)表提供的數(shù)據(jù)求得與的值,進而寫出線線回歸方程;(2)在(1)中求得的線性回歸方程中,分別取x=8與13求得y值,進一步求得殘差得結(jié)論.【詳解】因為,.,所以,.因此關于的線性回歸方程;(2)取x=8,得,此時;取x=13,得,此時∴(1)中回歸方程是可靠的.【點睛】本題考查線性回歸方程的求法,考查數(shù)學運算能力,屬于基礎題.20、(1)(2)【解析】
(1)根據(jù)與正弦定理化簡求解即可.(2)利用余弦定理以及(1)中所得的化簡求解即可.【詳解】解:(1),由正弦定理可得,即得,為三角形的內(nèi)角,.(2),由余弦定理,即.解得.【點睛】本題主要考查了正余弦定理求解三角形的問題.需要根據(jù)題意用正弦定理邊化角以及選用合適的余弦定理等.屬于基礎題.21、(Ⅰ)見證明;(Ⅱ)見證明;(Ⅲ)見證明【解析】
(I)直接代入計算得,利用得從而可證結(jié)論;(II)證明,即可;(III)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人車租合同樣本
- 共同交易二手房合同標準文本
- 人才派遣服務合同樣本
- 供水維修安裝合同標準文本
- 食用冰塊供貨合同范本
- 信息咨詢合同范例 英文
- 供暖管線維修合同標準文本
- 個人鮮花購銷合同樣本
- 2025公共服務項目承建合同
- 體能器材出租合同樣本
- 醫(yī)院康復信息系統(tǒng)建設需求
- SL721-2015水利水電工程施工安全管理導則
- 2024年廣東省萬閱大灣區(qū)百校聯(lián)盟中考一模數(shù)學試題
- 數(shù)字貿(mào)易學 課件 馬述忠 第13-22章 數(shù)字貿(mào)易綜合服務概述- 數(shù)字貿(mào)易規(guī)則構建與WTO新一輪電子商務談判
- 2024年電路保護元器件行業(yè)營銷策略方案
- 下肢動靜脈潰瘍的護理
- 照明維護方案
- 設備管理制度的風險評估與防范方案
- 辦公樓裝飾工程設計及施工招標文件室內(nèi)裝飾
- 半導體行業(yè)對國家國防戰(zhàn)略的支撐與應用
- 2024年十堰市中小學教師職稱晉升水平能力測試題附答案
評論
0/150
提交評論