江西省贛州市2024屆高三年級(jí)下冊(cè)年3月摸底考試數(shù)學(xué)試題(含答案解析)_第1頁(yè)
江西省贛州市2024屆高三年級(jí)下冊(cè)年3月摸底考試數(shù)學(xué)試題(含答案解析)_第2頁(yè)
江西省贛州市2024屆高三年級(jí)下冊(cè)年3月摸底考試數(shù)學(xué)試題(含答案解析)_第3頁(yè)
江西省贛州市2024屆高三年級(jí)下冊(cè)年3月摸底考試數(shù)學(xué)試題(含答案解析)_第4頁(yè)
江西省贛州市2024屆高三年級(jí)下冊(cè)年3月摸底考試數(shù)學(xué)試題(含答案解析)_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省贛州市2024屆高三下學(xué)期年3月摸底考試數(shù)學(xué)試題

學(xué)校:姓名:班級(jí):考號(hào):

一、單選題

2

1.已知集合力={乂X-4.X>01,5={X|y=log2(2-x)},則&Z)cB=

A.[0,2)B.(-多2)C.[0,4]D.(-8,4]

已知i為虛數(shù)單位.學(xué)+則w+河=(

2.)

1-1

A.1B.V2C.2D.4

3.在“BC中,AB=5,AC=2,C=120。,貝Usiib4=()

B.叵「5s3^/21

.----D.

14141414

4.在棱長(zhǎng)為1的正方體ABCD-4月GA中,石為棱的中點(diǎn),過(guò)鳥(niǎo)且平行于平面A.BE

的平面截正方體所得截面面積為()

A.當(dāng)B-|C.旗

D.276

5.在平行四邊形中,45=3,40=4,方?同=—6,友=3萬(wàn)面,則涼.標(biāo)=()

A.16B.14C.12D.10

8

6.若一組樣本數(shù)據(jù)為,x?,…,%的方差為2,£(-1)%=-2,%=x,+(-l)'(z=1,2,-,8),則

Z=1

樣本數(shù)據(jù)…,%的方差為()

A.1B.2C.2.5D.2.75

e3

7.已知。=,b=—=ln3,則(

e-1e

A.a<b<cB.b<a<c

C.b<c<aD.c<b<a

8.在邊長(zhǎng)為4的正方體/5CD-44GA中,點(diǎn)£是5。的中點(diǎn),點(diǎn)尸是側(cè)面45A4內(nèi)

的動(dòng)點(diǎn)(含四條邊),且tan/"0=4tan/£尸8,則尸的軌跡長(zhǎng)度為()

7127r_4兀8兀

A.-B.-C.—D.—

9999

二、多選題

9.已知等比數(shù)列{%}的前"項(xiàng)和為,,%=18,邑=26,則()

試卷第1頁(yè),共4頁(yè)

A.“〃>0B.S”>0

C.數(shù)列{I。/}為單調(diào)數(shù)列D.數(shù)列{|s』}為單調(diào)數(shù)列

10.已知函數(shù)/(x)=sinx+;sin2x+gsin3x,貝!]()

A.2兀是/(無(wú))的一個(gè)周期

B./(x)的圖象關(guān)于原點(diǎn)對(duì)稱

C.“X)的圖象過(guò)點(diǎn)(&0)

D.〃尤)為R上的單調(diào)函數(shù)

11.曲線。是平面內(nèi)與兩個(gè)定點(diǎn)片乙的距離的積等于:的點(diǎn)P的軌跡,給

出下列四個(gè)結(jié)論:其中所有正確結(jié)論的序號(hào)是()

A.曲線C關(guān)于坐標(biāo)軸對(duì)稱;

B.△片尸耳周長(zhǎng)的最小值為2+逐;

c.點(diǎn)p到了軸距離的最大值為走

2

D.點(diǎn)尸到原點(diǎn)距離的最小值為在.

2

三、填空題

12.求值:sin—+sin—=.

1212----------------

13.卜+了+%「展開(kāi)式中的常數(shù)項(xiàng)為.

14.已知尸是拋物線上異于頂點(diǎn)的點(diǎn),石在尸處的切線/分別交x軸、V軸于點(diǎn)

S,T,過(guò)戶作/的垂線分別交無(wú)軸、了軸于點(diǎn)監(jiān)N,分別記APMS與JNT的面積為幾$2,

C2

則g的最小值為.

四、解答題

15.如圖,在四棱錐尸-/BCD中,底面/BCD為直角梯形,ZABC=ZBCD=90°,PA1

平面ABCD,PA=AB=BC=4,CD=3,M為側(cè)棱尸C的中點(diǎn).

試卷第2頁(yè),共4頁(yè)

p,

AB

⑴求點(diǎn)D到平面PBC的距離;

(2)求二面角M-4D-5的正切值.

16.某人準(zhǔn)備應(yīng)聘甲、乙兩家公司的高級(jí)工程師,兩家公司應(yīng)聘程序都是:應(yīng)聘者先進(jìn)

行三項(xiàng)專業(yè)技能測(cè)試,專業(yè)技能測(cè)試通過(guò)后進(jìn)入面試.已知該應(yīng)聘者應(yīng)聘甲公司,每項(xiàng)

專業(yè)技能測(cè)試通過(guò)的概率均為;,該應(yīng)聘者應(yīng)聘乙公司,三項(xiàng)專業(yè)技能測(cè)試通過(guò)的概率

依次為55,I2,m,其中0<根<1,技能測(cè)試是否通過(guò)相互獨(dú)立.

05

2

(1)若機(jī)=(.求該應(yīng)聘者應(yīng)聘乙公司三項(xiàng)專業(yè)技能測(cè)試恰好通過(guò)兩項(xiàng)的概率;

(2)已知甲、乙兩家公司的招聘在同一時(shí)間進(jìn)行,該應(yīng)聘者只能應(yīng)聘其中一家,應(yīng)聘者以

專業(yè)技能測(cè)試通過(guò)項(xiàng)目數(shù)的數(shù)學(xué)期望為決策依據(jù),若該應(yīng)聘者更有可能通過(guò)乙公司的技

能測(cè)試,求加的取值范圍.

17.己知橢圓。:=+,=1(4>方>0)過(guò)點(diǎn),乎],橢圓C的右焦點(diǎn)與點(diǎn)。(2,-2)所在

直線的斜率為-2.

⑴求橢圓C的方程;

⑵若過(guò)Q的直線/與橢圓C交于48兩點(diǎn).點(diǎn)尸(3,0).直線PA,PB分別交橢圓C于點(diǎn)

M,N,直線九W的斜率是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.

18.已知函數(shù)/(x)=ei-lux.

⑴求的單調(diào)區(qū)間,

⑵已如用>0.若函數(shù)g(x)=/(x)-有唯一的零點(diǎn)%.證明,1</<2.

19.設(shè)數(shù)列/:%,電,322).如果對(duì)小于畸少VN)的每個(gè)正整數(shù)上都有%>%.

則稱n是數(shù)列A的一個(gè)“。時(shí)刻”.記D(A)是數(shù)列A的所有“D時(shí)刻”組成的集合,D(A)

的元素個(gè)數(shù)記為card

⑴對(duì)數(shù)列A:-l,l,-2,2,-3,3,寫出。(/)的所有元素;

試卷第3頁(yè),共4頁(yè)

(2)數(shù)列…,。6滿足{%,&,…,4}={1,2,3,4,5,6},若card(£>,/)=4.求數(shù)列A的種

數(shù).

(3)證明:若數(shù)列A滿足%11(〃=2,3,4,…,N),則card(Z),.

試卷第4頁(yè),共4頁(yè)

參考答案:

1.A

【分析】化簡(jiǎn)集合即可利用集合的交并補(bǔ)運(yùn)算求解.

2

【詳解】={x|x-4x<o1=|0<x<4},5=|x|y=log2(2-={x卜<2},

故8⑷cB=[0,2),

故選:A

2.B

【分析】根據(jù)題意,由復(fù)數(shù)的運(yùn)算以及復(fù)數(shù)相等的概念即可求得。再由復(fù)數(shù)的模長(zhǎng)公式

即可得到結(jié)果.

【詳解】由三竺=2+〃可得3+山=(2+附(1-1)=(2+6)+0-2),

1—1

則[It;'解得]I'貝加+6i|=H+i卜也.

故選:B

3.B

【分析】由已知利用余弦定理可求5c的值,根據(jù)正弦定理可求sin/的值.

【詳解】??,/B=V7,/C=2,C=120。,

...由余弦定理AS?=3C2+/C2-2BC-/CCOSC可得:SC2+2SC-3=0,

解得:3c=1,或-3(舍去),

二由正弦定理可得:sin^=5C,sin<?=—.

AB14

故選:B

4.A

【分析】根據(jù)給定條件,作出并證明過(guò)點(diǎn)耳,且與平面48E平行的正方體的截面,再求出

面積.

【詳解】在棱長(zhǎng)為1的正方體在co-4月GA中,取8。中點(diǎn)尸,42中點(diǎn)G,

連結(jié)DF,B{F,DBX,DG,GBX,GF,EF,而£為棱中點(diǎn),

答案第1頁(yè),共15頁(yè)

顯然BFIIDE11AS,BF=DE=AXG,得四邊形瓦明£,四邊形4EDG都是平行四邊形,

則BE//DF,A.E//GD,4瓦BEu平面,OG,。尸(Z平面,

于是DG//平面&BE,。尸//平面又DGCDF=D,Z)G,。尸u平面。G廳,

因此平面DG尸〃平面4BE,又EFHABHA禺,EF=AB=A}BX,即四邊形同耳/右是平行

四邊形,

則BFHA.EHDG,顯然平面DFBfi//平面AtBE,

從而過(guò)耳且平行于平面ABE的平面截正方體所得截面為四邊形次為G,

又。尸=做=80=。6=a二=字,即四邊形。郎G為菱形,

而DBt=Jl+1+1=y/3,GF=21;-1=\!1,

所以四邊形DFB、G的面積為S=:DB1.GF。.

故選:A

5.A

【分析】選取屈,友為基向量,將疝,礪用基向量表示后,再利用平面向量數(shù)量積的運(yùn)

算法則求解數(shù)量積血.話.

【詳解】因?yàn)?8=3,/。=4,益?而=-6,皮=3面,

DMC

AB

:AD-fC

---?21----?----?2----k2---*11----?---?2---?2

=AD——ADDC--DC=AD--ADAB--AB=1&2-2=16.

答案第2頁(yè),共15頁(yè)

故選:A

6.C

【分析】根據(jù)題意,結(jié)合方差的定義以及性質(zhì)代入計(jì)算,即可得到結(jié)果.

18_2

【詳解】設(shè)樣本數(shù)據(jù)看,吃,…,%的平均數(shù)為,則£卜,一葉=2,

Oi=\

設(shè)樣本數(shù)據(jù)九%,…,%的平均數(shù)為亍,由%=七+(-以。=1,2,…,8),

181

=3+Z*(T)'X,=3+IX(-2)=2.5.

4i=\"

故選:C

7.D

【分析】構(gòu)造函數(shù)/(x)=—(x>0),對(duì)/(x)求導(dǎo)可得f(x)在(e,+“)上單調(diào)遞減,可得

/(e)>/(3),即6>c,再由作差法比較。,6的大小,即可得出答案.

【詳解】令/■3=/鼠>0)了3;xTnx—nx,

x2x2

當(dāng)X£(o,e)時(shí),/r(x)>0,當(dāng)X£(e,+e)時(shí),/r(x)<0,

所以/(x)在(O,e)上單調(diào)遞增,在(e,+。)上單調(diào)遞減,

因?yàn)閑<3,所以/(e)>〃3),即色〉華,

e3

所以可得獨(dú)£=3>ln3,故6>c,

ee

e-1ee(e-1)eQ-l)e^-1)

所以。>6,

i^a>b>c.

故選:D.

8.D

【分析】根據(jù)121144尸。=41211/瓦有,求出產(chǎn)N=即可利用坐標(biāo)法求解軌跡方程,即可

由弧長(zhǎng)公式求解.

答案第3頁(yè),共15頁(yè)

在長(zhǎng)方體ABCD-4B£Di中,由于.,平面&ABB],CB±平面A,ABBt,

ADRp

在RtZ\E4。和Rt^PBC中,tanZAPD=——,tanNE尸8=—,

APPB

':tanZAPD=4tanZ.EPB,BE=—BC=—AD,PA=—PB,

222

在平面N8耳4,以A為坐標(biāo)原點(diǎn),以為x,y軸的正方向,建立平面直角坐標(biāo)系,

設(shè)尸(x,y),則/(0,0),8(4,0),

則由=可得J/+下=卜卜_盯+丁,化簡(jiǎn)可得\+野+y2=g,由于

XNO/NO,故尸的軌跡表示圓心在半徑為廠=|的圓在第一象限的弧長(zhǎng),

由于。卜呼],

故,因此軌跡為NQ龍〃=;所對(duì)的弧長(zhǎng),故長(zhǎng)度為:x|=T,

故選:D

9.BC

「一af_3

【分析】根據(jù)條件得到c或4,再對(duì)各個(gè)選項(xiàng)逐一分析判斷,即可求出結(jié)果.

1=2[…2

【詳解】設(shè)數(shù)列{%}的首項(xiàng)為外,公比為0,

答案第4頁(yè),共15頁(yè)

a〔q—18

由題有<,解得

2

q+aiq+aiq=26

3

a——

對(duì)于選項(xiàng)A,當(dāng)/4,〃為奇數(shù)時(shí),an<0,所以選項(xiàng)A錯(cuò)誤,

%=32

對(duì)于選項(xiàng)B,因?yàn)橐囟?,一""),當(dāng)"=-4,顯然有S“>0,當(dāng)["=:時(shí),

171%=323=2

l-q<0,l-q"<0,所以S">0,故選項(xiàng)B正確,

對(duì)于選項(xiàng)C,當(dāng)0=3時(shí),數(shù)列{|?!皇鞘醉?xiàng)為2,公比為3的遞增數(shù)列,

當(dāng)《=-:時(shí),數(shù)列{|?!梗鞘醉?xiàng)為32,公比為'的遞減數(shù)列,所以選項(xiàng)C正確,

對(duì)于選項(xiàng)D,由選項(xiàng)B知S">0,所以|S,J=S,,

。=一>32(1-(-;)”)

當(dāng)"4時(shí),S?=----------4=〒口-GR"],此時(shí)S”不具有單調(diào)性,所以選項(xiàng)D錯(cuò)誤,

4=321+-74

114

故選:BC.

10.ABC

【分析】直接利用三角函數(shù)的性質(zhì),函數(shù)的周期性和對(duì)稱性判斷ABC,舉反例排除D.

【詳解】函數(shù)/(x)=sinx+;sin2x+/in3x,

對(duì)于A:/(x+27i)=sin(x+

=sinx+-sin2x+-sin3x=/(x),

23

故2兀是函數(shù)的一個(gè)周期,故A正確;

對(duì)于B:函數(shù)/(-x)=sin(-x)+;sin(-2x)+^sin(-3x)

=-sinx--^-sin2x-^-sin3x=-f(x),

故函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,故B正確;

對(duì)于C:當(dāng)工=兀時(shí),/(7i)=sin7i+;sin27i+gsin37i=0,故C正確;

對(duì)于D:因?yàn)?(%)=sinx+工sin2x+,sin3x,

答案第5頁(yè),共15頁(yè)

所以/⑼=sin0+gsin0+^sin0=02

3-

即"。)</口,(撲〃兀),

所以函數(shù)〃x)在R上不是單調(diào)函數(shù),故D錯(cuò)誤.

故選:ABC.

11.ABD

【分析】先根據(jù)題意求出曲線C的方程,對(duì)于A,由對(duì)稱的性質(zhì)判斷,對(duì)于B,表示出三角

形的周長(zhǎng)后利用基本不等式可求出其最小值,對(duì)于C,將曲線C的方程化為「的一元二次

方程,然后由A20可求出x的范圍,從而可求出點(diǎn)P到了軸距離的最大值,對(duì)于D,將方程

化為關(guān)于V+1的一元二次方程,由A20可得yeR,再把曲線方程變形可求出結(jié)果.

【詳解】解:設(shè)尸(x,力得:412+/-2了+1爐+必+2尸1)=9,得4#+y2+i)2_i6「=9,

由于方程中x/的次數(shù)均為偶數(shù),故其圖象關(guān)于坐標(biāo)軸對(duì)稱,故A正確;

因?yàn)椤魅♂闹荛L(zhǎng)為2+|尸川+|尸用22+2眄皿西=2+痛,故B正確;

展開(kāi)方程得:412+1)2+8(/-1)/+4/_9=0關(guān)于/的一元二次方程有解,

A=64(X2-1)--64(X2+1)-+16X9>0,所以16fv9,所以|小1,故C錯(cuò)誤;

將方程化為關(guān)于x2+1的一元二次方程4(/+1)2+8(/+1)產(chǎn)+4/-16/一9=0有解,

公=64_/-64丁+256/+16、920,恒成立yeR,

因?yàn)?(/+/+日=]6/+9,所以.+=+1=;36了2+9)

所以

所以|0可=/2+/2年,所以點(diǎn)P到原點(diǎn)距離的最小值為孝,故D成立.

故選:ABD

【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查曲線與方程的綜合應(yīng)用,解題的關(guān)鍵是根據(jù)題意求出曲線C

的方程,然后逐個(gè)分析判斷,考查數(shù)學(xué)計(jì)算能力,屬于較難題.

12.逅

2

【分析】根據(jù)誘導(dǎo)公式及輔助角公式求解即可.

答案第6頁(yè),共15頁(yè)

【詳解】sin—+sin—=sin—+cos—=A^sin-^-+—=忠in工——.

121212124J32

故答案為:逅.

2

13.630

【分析】]/+〉+:+;!表示7個(gè)]+(+相乘,再結(jié)合組合即可得解.

【詳解】“2+了+!+3表示7個(gè)卜+了+:+;|相乘,

則常數(shù)項(xiàng),應(yīng)為1個(gè)f,2個(gè)工,2個(gè)V,2個(gè),相乘,

%y

所以卜2+>+:+曰展開(kāi)式中的常數(shù)項(xiàng)為C1C2C2C2=63()

故答案為:630.

14.1

【分析】由拋物線的對(duì)稱性,設(shè)P(%蘇)(加>0),根據(jù)導(dǎo)數(shù)的幾何意義分別求出直線/和直

線的方程,進(jìn)而求出S,T,M,N四點(diǎn)的坐標(biāo),再分別求出兩個(gè)三角形的面積,化簡(jiǎn)進(jìn)而

可得出答案.

【詳解】由拋物線的對(duì)稱性,不妨設(shè)點(diǎn)尸在第一象限,設(shè)尸(外加2)(機(jī)>()),

由歹二%2,得了=2x,當(dāng)工=冽時(shí),yf=2m,

所以切線/的方程為加2=2次(x—加),即y=2加%_%2,

2

令>=0,貝=令x=0,則^=—加2,gpsfp0U(0,-m),

由題意直線W的方程為J—加2即)=_+]+加2,

2m2m2

令>=0,貝>Jx=2冽加,令x=0,貝!]>=;+加2BPM(2m3+冽,0),N[o,;+加2

c1(212)1(^21)

=—\mH-----\-m\m=—7mH——\m,

22l22{2

2—zm\mI--------

故工='>----乂-=m+—>2jm--=1,當(dāng)且僅當(dāng)機(jī)=3,即機(jī)=2時(shí)取等號(hào),

S.1,2113物N4n4m2

1-2m+—\m

212)

答案第7頁(yè),共15頁(yè)

C2

所以U的最小值為1.

【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用導(dǎo)數(shù)的幾何意義分別求出直線/和直線的方程,是解決本題

的關(guān)鍵.

15.⑴速

2

⑵平.

【分析】(1)根據(jù)嚏棱版—P5C=唯棱錐尸—5CD利用等體積法計(jì)算可得;

(2)設(shè)。為/C的中點(diǎn),過(guò)。作交/。于連接。M、HM,即可證明(W_L平

面48CD,從而得到4D_L平面MOH,則/MHO為二面角M-40-8的一個(gè)平面角,再求

出OH、0M,即可得解.

【詳解】(1)由P/工平面N8C。,可得Q棱黜常0=:$.88¥/,

令點(diǎn)。到平面PBC的距離為d,則嚏棱曲“sc=1S-Bc-d,

由G棱錐O-PBC=G棱錐P-BC0,可得3S4PBC,d=]S&BCD,P4,

.S?PA.

貝!|d=箕2—,

、△PBC

由ZABC=90。,8C=4,C。=3,可得S^BCD=;BC-CD=6,

由P/_L平面/BCD,尸/u平面尸N8,所以平面尸/8_L平面/BCD,

又NN3C=90°,平面尸48c平面48co=48,3Cu平面48cZ),

所以平面P4B,又尸Bu平面P43,

所以BC_LP3,又PB=44。+4?=4后,則1PBC=g尸"Bens也,

所以"=與=52,即點(diǎn)。到平面尸3c的距離為逑

8V222

答案第8頁(yè),共15頁(yè)

(2)設(shè)。為/C的中點(diǎn),過(guò)。作。H_L4D交NO于H,連接。M、HM,

,?又是尸C的中點(diǎn),.?.(W〃尸區(qū),又尸/,平面48cD,所以(W,平面48CD,

又4Du平面N3C。,OMLAD,

又OHCOM=O,?!??!?lt;=平面乂011,

40_L平面MOH,HMu平面M0H,AD1MH,

ZMHO為二面角M-AD-B的一個(gè)平面角,

又23c=;xgc0BC=3,

且4D=j42+(4-3)2=如,所以。燈=奈,

所以tan/MHO==—,

0H3

即二面角的正切值為姮.

3

(2)|<m<l.

【分析】(1)根據(jù)相互獨(dú)立事件的乘法公式即可求解,

(2)根據(jù)二項(xiàng)分布的期望公式求解去甲公司的期望,根據(jù)相互獨(dú)立事件的概率乘法公式可

求解去乙公式通過(guò)項(xiàng)目的概率,即可求解期望,進(jìn)而比較兩者的期望即可求解.

【詳解】(1)記“該應(yīng)聘者應(yīng)聘乙公司三項(xiàng)專業(yè)技能測(cè)試恰好通過(guò)兩項(xiàng)”為事件A

由題設(shè)P(/)=*xC;xML+Lx亡x

6336

(2)分別記“該應(yīng)聘者應(yīng)聘甲、乙公司三項(xiàng)專業(yè)技能測(cè)試中通過(guò)的項(xiàng)目數(shù)為

由題設(shè)知:4~43,3,所以E(/=3xg=2

〃的所有可能取值為0」,2,3

答案第9頁(yè),共15頁(yè)

P(r)=0)=—x—x(l-m)=-~~—

v763v718

7-6m

尸何=1)=9xk(i)+L2x(i)+\_x小

63v763v7618

10-3m

18

故"的分布列為

70123

1-m7-6m10-3m5m

P

181818~9~

n.L/、八1-m?7-6m八10-3m「5m2m+3

從而£(77)=Ox----+lx------+2x-------i-3x——

v718181892

2m+3.

£(〃)>£?,得,----->2,,1

由2解得;<加<1,

0<m<1,2

0A<m<1,

故”?的范圍為:-<m<1

2

17.嗚+卜1;

(2)是定值,定值為2.

【分析】(1)根據(jù)題意,列出關(guān)于。/,c的方程,即可得到結(jié)果;

(2)根據(jù)題意,設(shè)/的方程為x="?5+2)+2,聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理代入

計(jì)算,表示出&JV,即可得到結(jié)果.

【詳解】(1)由題意可設(shè)橢圓的半焦距為。,且橢圓C的右焦點(diǎn)為(。,0),

141

~r—r-L

a23H

由題意得:[a2=b2+c\

-2-0c

-----=—2

l2-c

解得c=l,a2=3,/-2,

所以c的方程為:—+^=1.

32

答案第10頁(yè),共15頁(yè)

設(shè)/的方程為x=m(y+2)+2,設(shè)/(再,必),8(如必),人(%3,%)山(》4,居),則直線尸/的方程

為x-1y+3,

%

$.3

X=y+3,

由2M,可得[2(為一3)2-卜3M2]j?+i2(西一3)辦了+12必2=0,

土+匕=1,'

132

22

結(jié)合?+^=1,可得(2-為)/+(玉-3)必了+弁=0,

2

可得必?%—-,解得力

2—X12—a

x—2x-—■^—+3=—^—+2,

代入x=1y+2,解得七二1

必必2-$Xj—2

同理可得”=「2,匕=+2

2-X2x2-2

%必

痂1.-乂一%_2f22f

懼%MN——11

%-%3L_

X2-2X]—2

X]-x2

y2[2-(my1+2m+2]一%[2-(my2+2m+2

2俏(%一%)=之

"心-%)

故直線九W的斜率是定值,且定值為2

【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題主要考查了橢圓與直線相交問(wèn)題,難度較大,解答本題的關(guān)鍵在于

聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理計(jì)算.

18.⑴減區(qū)間為(0,1),增區(qū)間為(1,+8);

答案第11頁(yè),共15頁(yè)

(2)證明見(jiàn)解析.

【分析】(1)求出/'(x),求得了"(尤)>0在x>0上恒成立,可得/■'(X)為增函數(shù),由/'⑴=0,

結(jié)合定義域可得單調(diào)遞增區(qū)間;

(2)由已知可得g(x),求導(dǎo),由(1)可知g'(x)在(0,+。)單調(diào)遞增,

且g'⑴=一加<0,及g'(l+m)>0,則存在唯一的te(1,1+⑼使得g'?)=0,

分析g(x)單調(diào)性,得到gGLn=g"),再通過(guò)函數(shù)g(x)有唯一的零點(diǎn)%,即

化簡(jiǎn)可得(2-f)e'1—In?+1—=0,構(gòu)造函數(shù)=-Inf+1—(t>V),

分析單調(diào)性,再分別判斷"(1)4(2)的正負(fù),即可求解.

【詳解】(1)V/(x)=e^1-lux,.'.f'(x)=e'-'

二/"(#=產(chǎn)+:>0

.,.當(dāng)x>0時(shí),/'(x)=ei-:為增函數(shù)

又???/'(i)=o

.?.當(dāng)X€(0,1)時(shí),T(X)<0,/(x)單調(diào)遞減;

當(dāng)xe(l,+8)時(shí),/'(x)>0J(x)單調(diào)遞增.

.?■/W的減區(qū)間為(0,1),增區(qū)間為(1,+8)

(2);g(x)=/(%)-(x-1)=ex~l-\nx-mx+m(m>0)

g'(x)=ex-1---m(x>Q,m>0)

由⑴可知g'(x)在(0,+s)單調(diào)遞增,且g'(l)=-洸<0,

又g'(l+加)=e"-------m>em-(m+1)>0

1+m

???存在唯一的/€(1,1+切)=(1,+8)使得g'(t)=0

.?.當(dāng)xe(0,/)時(shí)g'。)<0,g(x)單調(diào)遞減;當(dāng)Xe&+8)時(shí)g'(f)>o,g(x)單調(diào)遞增;

11

g(x)1mli=g?)=e'-Int-mt+m

答案第12頁(yè),共15頁(yè)

若方程g(x)=e"TTnx-加x+冽=0有唯一的實(shí)數(shù)不,則%=%>1

g'?)=e/-1---m=0,

g=e'T-]nt-mt+m=0

消去加可得(2-7)e'T-lm+l->=0(/>l)

4/?(f)=(2-f)e,-1-ln/+l-y(?>1),

則〃a)=(lT)e"—+g=(1-/)卜1+

〃G)在/e(1,+<?)上為減函數(shù)

且/?(l)=l>0,〃(2)=g_ln2<0

.,.當(dāng)〃(。=0時(shí)te(l,2),即1cx。<2

19.⑴。(,)={3,5};

(2)15種;

(3)證

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論