版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
EffectsofWoodProducts
MarketsandForestPoliciesonLandUseChange
DavidN.Wear
WorkingPaper24-07
May2024
ResourcesfortheFuturei
AbouttheAuthor
DavidN.WearisanonresidentseniorfellowandthedirectoroftheLandUse,
Forestry,andAgricultureProgramatResourcesfortheFuture(RFF).Priortohis
arrivalatRFF,hespentmorethan30yearswithUSForestServiceResearchand
Development,mostrecentlyasaseniorresearchscientistandleaderofnationalandregionalresourceassessments.
HisworkhasbeenrecognizedwithnationalawardsfromtheUSSecretaryof
Agriculture,ChiefoftheUSForestService,andSocietyofAmericanForesters.Wear’sresearchfocusesonlinkingeconomicchoiceandbiophysicalelementsofnatural
resourcesystemstoprojectresourceconditionsandilluminatepolicyoptions.Hehaswrittenextensivelyonforesteconomics,forestcarbondynamicsatbroadscales,
timbersupply,theeffectsofriskonforestinvestments,andlanduse.Hehasledor
participatedininterdisciplinaryinitiativestounderstandtheinfluenceoflanduseandforestmanagementonavarietyofecosystemservices,includingbiologicaldiversityandwater.Asafederalscientist,heledorcontributedtoseveralnationalandregionalnaturalresourceassessmentsincludingtheSouthernForestResourceAssessment,SouthernForestFuturesProject,andNationalClimateAssessment.
Acknowledgments
ThisresearchwassponsoredbyaUSForestServiceWoodInnovationsGrant
(20DG11094200214)titled“TheImportanceofForestProductMarketsforForest
ConservationandRestoration”withResourcesfortheFuture.IbenefitedfromreviewsbyMattWibbenmeyerandJimBoyd.
EffectsofWoodProductsMarketsandForestPoliciesonLandUseChangeii
AboutRFF
ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutionin
Washington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFis
committedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.
Workingpapersareresearchmaterialscirculatedbytheirauthorsforpurposesof
informationanddiscussion.Theyhavenotnecessarilyundergoneformalpeerreview.Theviewsexpressedherearethoseoftheindividualauthorsandmaydifferfrom
thoseofotherRFFexperts,itsofficers,oritsdirectors.
AbouttheProject
IdeclarethatIhavenoknowncompetingfinancialinterestsorpersonalrelationshipsthatcouldappeartohaveinfluencedtheworkreportedinthispaper.
SharingOurWork
OurworkisavailableforsharingandadaptationunderanAttribution-NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyand
redistributeourmaterialinanymediumorformat;youmustgiveappropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynot
applyadditionalrestrictions.Youmaydosoinanyreasonablemanner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethe
materialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit
/licenses/by-nc-nd/4.0/.
ResourcesfortheFutureiii
Abstract
Woodproductsmarketsinfluencereturnstoforestlanduses,andpoliciestargeting
thesemarketscouldinfluencelanduseoutcomes,withimportantimplicationsfor
timberscarcity,aswellasconservationoutcomesfromwatershedprotectionto
carbonsequestration.Inthispaper,Imodelinteractionsbetweenwoodproduct
demands,timberprices,andlanduseswitchingintheUSSouthbetween1982and
2012andshowthattheamountandvolatilityoffinancialreturnstoforestsand
agricultureinfluencedbothafforestationanddeforestationdecisions.Ithensimulatetheeffectsofdemandexpansionandforestpoliciesonafforestation,deforestation,
andnetchangeinforestlandareausingcounterfactualscenariosappliedto2007–12.OnescenarioestimatestheeffectsofeconomicgrowthusingtheGreatRecessionasanaturalexperiment.Otherscenariosexaminepolicyapproachesthat(1)encourage
additionalwooduseinconstruction,(2)subsidizetreeplanting,and(3)change
agriculturalreturns.Theeconomicgrowth(recessioncounterfactual)scenarioresultsinlittlenetchangeinforestarea—increasedafforestationdrivenbyhighertimber
pricesisoffsetbydeforestationfromincreaseddemandforurbanlanduses.In
contrast,policiesthatincreasetimberdemandswithoutincreasingdemandsforurbanland(e.g.,usingmorewoodinthebuiltenvironment)aretwiceaseffectiveastree-
plantingsubsidiesatencouragingafforestationandexpandingforestlanduses.
Agriculturalreturnsmorestronglyaffectdeforestationdecisions(forest-to-agricultureswitching)thanafforestationdecisions(agriculture-to-forestswitching)andhavea
verysmallimpactonforestarea.Resultshighlighthowanypolicythatincreases
returnstoforestuses,suchasthroughcarbonoffsetmarkets,couldincreaseforestareainthisregionandothers.
EffectsofWoodProductsMarketsandForestPoliciesonLandUseChangeiv
Contents
Highlights
1
1.Introduction
2
2.Methods
3
2.1.LandUseChoice
3
2.2.WoodProductsMarkets
7
3.DataandEstimation
8
4.Results
11
5.SimulationAnalysis
12
5.1.BaseCase
13
5.2.EconomicGrowthCounterfactual
13
5.3.ExpandingWoodContentofNewConstruction
14
5.4.SubsidizedTreePlanting
14
5.5.AgriculturalPrices
14
6.Discussion
15
7.Conclusions
16
References
18
Tables
21
Figures
28
ResourcesfortheFuture
1
Highlights
.LinkedmodelsofwoodproductsmarketsandlandusechangeintheUSSouthhighlighttheinfluenceofwoodproductspricesoncomponentsoflanduse
change.
.CounterfactualsimulationindicatesthattheGreatRecessionledtobothreducedafforestationof0.728millionhectaresandreduceddeforestationofabout0.647millionhectaresbetween2007and2012.
.Policysimulationsindicatethatgrowingtimberdemandsismoreeffectivethanreducingtree-plantingcostsatexpandingoverallforestarea.
.Policiesthatexpandthewoodcontentofconstruction—thatis,growingwood
demandwithoutalsoexpandingdemandsforlandindevelopment—areespeciallyeffectiveatincreasingforestlanduses.
EffectsofWoodProductsMarketsandForestPoliciesonLandUseChange
2
1.Introduction
TherelationshipbetweenUStimberproductionandforestconditionshaschanged
substantiallysincethemid-twentiethcentury.Withthesubstantialcurtailmentof
harvestingfromfederallandintheearly1990s,old-growthharvestinginwestern
regionsshiftedrapidlytosecondgrowthandtotheSoutheast.Afforestationof
agriculturallandexpandedtheareaofactiveforestmanagementonprivatelands,
leadingtoincreasedproductionfromplantedforestsandstrongexpansioninthe
region’scarbonsink(WearandCoulston2015).Duringthisperiod,UStimberharvestsrosetopeaklevelsatabouttheturnofthecentury,whileforestareaandforest
inventoriesalsogrew(Oswaltetal.2019),suggestingthatlanduseandforest
managementdecisionsareresponsivetotimberpricesandthatpoliciesthataugmentforestreturnswouldfurtherincreasetheareaofforestsonprivateland.Thisstudy'sobjectiveistoestimatethepotentialforeconomicgrowthandpolicytoaffectprivateforestlandinresponsetoscarcitysignalsbasedonmodelsofhistoricalchanges.
Privatelandowners’anticipationofandresponsetofuturepricesisthekeyto
mitigatingfuturetimberscarcitybutisalsothemechanismforenhancingthe
provisionofseveralecosystemservices,fromwatershedprotectiontocarbon
sequestration.Modernlandconservationpolicyworkslargelythroughmarket
instrumentssuchasrentalpaymentstoinduceretirementofagriculturallands
throughUSDA’sConservationReserveProgram(Hellerstein2017)orcarbonpaymentstoinduceafforestationandothermanagementthroughvoluntaryorcomplianceoffsetmarkets(vanKootenandJohnston2016).Transferabledevelopmentprogramsrelyoneconomicallyrationaltradingoflanduseoptionstoprovideenvironmentalbenefits
(McConnellandWalls2009).Thenetcarbonbenefitsderivedfrombioenergywithcarboncaptureandstoragedependonpatternsofinducedlandusechange
(Daigneaultetal.2012;Zhaoetal.2024).Understandingthemechanismsandthe
potentialmagnitudeoflandusechangethereforeprovidesfoundationalinformationfortheeffectivedesignofconservationandclimatechangepolicies.
Inthispaper,IuseempiricalmodelsofhistoricalchangeandinsightsfromtheGreatRecessiontoexaminetheinteractionsamongwoodproductsmarkets,harvesting,andlandusechanges,aswellastheeffectsofvariousforestpolicies.ImodeldecisionsbylandownerstoconvertforeststootherusesortoestablishnewforestsintheUS
South,theregionwiththemostactiveforestinvestmentinthenation,withthelargestglobalproductionandconsumptionofwoodproducts(Wearetal.2016).Ilinkmylandusechoicemodeltoareduced-formnationaltimbermarketmodeltoestimatehow
marketfactorsaffectedlandusechoices,thensimulateoutcomesforalternative
scenarios.IlookfirstattheGreatRecessionasa“naturalexperiment”thatdisruptedwoodproductsmarketsbetween2007and2012andprovidesinsightsintohow
economicgrowthaffectsmarketsandlanduse.ThisrecessionstartedinDecember2007withthecollapseofsubprimemortgageinstrumentsandresultedin
unprecedentedcollapsesintheconstructionandsolidwoodproductssectors,with
ResourcesfortheFuture
3
substantialimpactontimberprices.Housingstartsfelltotheirlowestlevelssince
WorldWarII,andwhiletherecessionlastedsixquarters,housingstartsdidnotclimbaboveprerecessionlowsuntil2016(Prestemonetal.2018).
Isimulatehowthesectorandlandusechangeswouldhaveevolvedbetween2007
and2012absenttherecession,acounterfactualexperiment.Thisprovidesestimatesoftheimpactsoftherecessionand,moreimportantly,insightsintohoweconomic
growthandhousingdemandaffectbothafforestationstimulatedbyrisingtimber
pricesanddeforestationtosupporthousingdevelopment.Ithenusethesame
approachtomodeltheeffectsofthreepolicyscenariosthatwouldaltertimberreturns(1)ascenariothatincreasesthewoodcontentofnewconstruction,linked,for
example,toinitiativesfocusedonusingmasstimberintallcommercialandresidentialstructures,(2)ascenariothatappliestree-plantingsubsidies—amorefamiliarsupply-sidepolicytoolaimedatencouragingafforestation,and(3)ascenariothatreduces
cropreturns.Iconcludewithacomparisonoftheeffectsofthesepoliciesand
implicationsforabroadsuiteofecosystemserviceobjectives.
2.Methods
2.1.LandUseChoice
Myanalysisdevelopsamodeloflandusechoicesthatlinksforestproductspricestothechoicesthatdeterminechangesinforestuse.Theseincludetransitionsintoforestuses(afforestation)andoutofforestuses(deforestation).Becauselandusechangesarecostlytoreverseandarebasedonuncertainfuturereturns,optionvalueslikely
playanimportantroleinthechoicecalculus.Ithereforeusearealoptionsframeworkformodelinglandusechanges.Schatzki’s(2003)modelofafforestationinGeorgia
providesamethodforincorporatingrealoptionsconsiderationsinaneconometric
modelthatIextendtoallrelevantlandusechoicesusingalanduseshareformulation.Thisrealoptionsapproachextendspreviousstaticlandusechoicemodels(Lubowskietal.2008;Hardieetal.2000;Kimetal.2018)toaccountfordynamicsinawaythataccommodatesobservedvariabilityandhysteresisinlanduseoutcomes.Simplyput,considerationofrealoptionsindecisionmakingdampensshort-runintertemporal
changesbyplacingvalueondeferringthesechoicestotakeadvantageofadditionalinformation.Otherstudieshaveusedrealoptionssimulationapproachestoexplorelanduseswitchingtoanovellanduse(Songetal.2011forswitchgrass;Wearetal.
2015forgeneticallymodifiedeucalyptus)andtoexploreforestinvestmentresponsestobiophysicalandclimaterisk(Meietal.2019).
Iassumethatlandusechoicesreflecttheoutcomeofexpectedreturncomparisonsamongalternativeuses.Returnestimatesarebasedonthediscountedstreamof
expectedcostsandrevenuesforeachuse,conversioncosts,andoptionvaluesthatreflectopportunitiestoswitchinthefuture.Thestructureofcosts,returns,and
optionsaredissimilaramongusesandareinfluencedbythequalityofland.
EffectsofWoodProductsMarketsandForestPoliciesonLandUseChange
4
Agriculturalusesgenerateannualreturns,forestsgenerateperiodicandsometimesirregularreturns,andurbanusechoicesareessentiallyirreversibletransfers.(Theoptionvalueofreversiontoruralusesisconsiderednegligible.)
Iformulateabinarylandusecomparisonasfollows.Iassumeautility-maximizingrisk-neutrallandownerwhoallocateslandtotheusewiththehighestnetpresentvalueofreturns,netofconversioncostsandoptionvalues,basedonSchatzki(2003).Futurereturnsaredescribedbyastochasticdiffusionprocess,usingageometricBrownianmotion(GBM)processwithdriftμiandvarianceσi—parametersthatareinformedbyhistoricalmovementofreturns.Foragivenlandqualityq,thechoicebetweencurrentlanduseiandanalternativelandusejisbasedonavaluecomparison:
vq,i=max(Rq,i/r?μi+0vij,Rq,j/r?μj?ccij+0vji),(1)
whereRq,iistheaverageannualnetreturntolanduseinthecurrentperiod,risthediscountrate,μiisthedriftparameter,andccijisthecostofconvertingfromlanduseitolandusej.Forforests,Risanannualizedrentequivalentbasedonthepresentnetvalueofaninfiniteandpossiblyirregularstreamofcostsandreturns.Option
valuesaredefinedfortheoptionofconvertingfromthecurrentlanduseitotheotherlandusej(0vij),whichisforgonewithlanduseconversion,andtheoptionvalueofconvertingbacktolandusei(0vji),whichisobtainedwiththelanduseconversion.Optionvaluesimplythatchoicesarecostlytoreverseandsensitivetouncertainty
aboutfuturereturnstobothuses;thatis,OVisafunctionofreturnvolatility(a
functionofσiandσj)andthecorrelationbetweenreturns(pij;seeSchatzki2003fordetails).Thedenominatorofthereturnterminequation(1)defineshighervalues
whenreturnsaretrendingupward.(Notethatμimustbeboundedfromabovebyrtoavoidexplosivereturngrowth.)
Theincorporationofoptionvaluetermsdefinesthelandusechoiceasafunctionofexpectedreturns,returnvolatility,correlationofreturns,andconversioncosts.Asa
result,landusehysteresiscanarise,sobothlandusesiandjmaybeobservedwithinthesamequalityclass.Landusemayevenchangewithoutachangeinrentsbecauseallreturninformationinformstheexpectedvarianceofreturnsandthecorrelationofreturnsbetweenuses(i.e.,stablereturnsimplyareductioninuncertaintyaboutfuturereturnsovertime).
ResourcesfortheFuture
5
Myresearchquestionsfocusonhowlandusedynamicsaffecttheoverallareaof
forestwithinacounty,includingforestretention,afforestation,anddeforestation.
Usingthearea-frameinventoryoflanduseobservationsdefinedbytheNational
ResourceInventory(NRI),Isummarizeeachcounty’sobservedlandusechanges
betweensurveyyears(five-yeartimestepsbetween1982and2012)forfourbroadlandusecategories:agriculture(A),forest(F),urban(U),andother(O).The“other”classincludesfederalland,ConservationReserveProgram(CRP)land,andwaterbodies.Foreachcountyk,definealandusechangematrixas
Tk,t=
SAASFASUASOA
SAFSFFSUFSOF
SAOSFOSUOSOO
SAU
SFU
SUU
SOU
)
(2)
Tkdefinesthetransitionsharesforalllanduses,whereSijistheshareoflanduseiinperiodtthattransitionstolandusejinperiodt+1.Netlandusechangewithincountykisdefinedby
Ak,t+1=Tk,tAk,t,(3)
whereAisa1*4vectoroflandusesforeachcounty.NotethatTisindexedbytimetoreflectdifferentstates(i.e.,changesinexogenousvariablessuchasrentsthat
determinelanduseswitchingshares).
ToestimatethetransitionsharesthatconstituteTk,t,Idecomposethetransition
matrixintoasequenceofbinarychoices.Thefirststagedetermineschangesintoandoutofthe“other”category.Thismayrepresentclassificationnoiseor,inthecaseoftheCRP,anadministrativeprocess.WiththeexceptionoftheCRPbetween1982and1992,transitionsintoandoutofthe“other”categoryhavebeennegligible,andItreattheseasexogenous.
Thesecondstageislanddevelopment,ortheconversionofrurallandtourbanuses.Urbanuserentsareinfluencedbylocalconditionsthatshiftdemandsforlaborand
land.Iassumethatwhilethereturnstoanexistingruraluseinfluencewhenrurallandisdeveloped,asdescribedbyequation(1),returnstootherrurallandusesarenot
importanttothechoicetoconvertrurallandtoanurbanuse.Ialsoassumethaturbanlandusescannotbeconvertedbacktoruraluseswithinthetimeframeofthismodel,generallyconsistentwithobservedtransitionsintheNRIdata.Thisdefinesan
urbanizationsubmatrix:
Turbanization=l一一
]=l],(4)
EffectsofWoodProductsMarketsandForestPoliciesonLandUseChange
6
wherethetworowsofthematrixdefineurbanizationasbinarychoicemodelsfor
developingforestandagriculturallands,respectively:
SAU=Pr(U|A)=Pr(?0ⅤU>?0ⅤA?CCAU)=f(XAU,CCAU);SAA′=1?SAU;(5.a)
SFU=Pr(U|F)=Pr(?0ⅤU>?0ⅤF?CCFU)=f(XFU,CCFU);SFF′=1?SFU,(5.b)
whereXijisavectorofexplanatoryvariablesthatdeterminequasirentsandoptionvaluesforusesiandj,andCCijisconversioncostsbetweenusesiandj.
Thethirdstageofthedecisionstructureislanduseswitchingbetweenagriculturalandforestlanduses.Consistentwithequation(1),Iassumethatlanduseswitchingisinfluencedbyrents,conversioncosts,andthevolatilityofexpectedreturns.Theruralusedecisionsdefinethesubmatrix:
Trural=l
].
(6)
TherowsofTruraldefinetwobinarychoicemodelsforforestandagricultureland(afteradjustingsharestosumtoone):
SAF=Pr(F|A)=Pr(?0ⅤF>?0ⅤA?CCAF)=f(XAF,CCAF);SAA=1?SAF;
SFA=Pr(A|F)=Pr(?0ⅤA>?0ⅤF?CCFA)=f(XFA,CCFA);SFF=1?SFA,
(7.a)
(7.b)
whereXAF,XFAarevectorsofexplanatoryvariablesthatinfluencethedeterminationofrents,optionvalues,andconversioncostsforagriculturalandforestlanduses.Thefulltransitionmatrix,equation(2),canbeapproximatedwithequations(5a),(5b),(7a),and(7b),providingestimatesofthefirstthreecolumnsofrows1and2,andtheotherelements(Kij)determinedbyassumptions.Forhistoricalsimulation,Isetthekvaluestotheirobservedvalues.Forprojections,Idefineurbanandotherusesassinks,so
thatdiagonalelementsfortheseusesareequaltooneandoff-diagonalelementsareequaltozero.Thus
一
Tk,t=
(1?)
(1?)
KUA
KOA
(1?)
(1?)
KUF
KOF
SAU
一
SFU
KUU
KOU
),
(8)
wherehatsindicateestimatedvalues,andksareconstantssetbyassumption.
ResourcesfortheFuture
7
2.2.WoodProductsMarkets
ThelinkbetweenwoodproductsmarketsandlanduseisthroughtheXi,jvectors,
whichincludeforestrents,theirvariance,andcorrelationwithotherreturns.Forest
rentsaredefinedbylinkingtimberpricestoaforestryproductionfunctionsothat
changesinpricesaltertheright-handsidesofequations(5a),(7a),and(7b).Idevelopreduced-formtimberpriceequationstolinkdemanddeterminants(e.g.,housingstartsandGDP)tomarketclearingpricesfortimber,basedonastructuralmodelof
interactingwoodproductsandtimbersuppliesanddemands(WearandMurray2004;Prestemonetal.2018;Daigneaultetal.2016).Myreduced-formequationsderivefromastructuralmodelofwoodproductsandtimbersuppliesanddemands.Ipositan
aggregatetransformationanddualrestrictedprofitfunctionforwoodproducts:
Tr(X,Y)=0;(
9)
Rπ(Py,PNF,XF)=0,(
10)
whereXisavectorofinputs,includingtimber;Yisavectorofwoodproductoutputs;andprepresentspricevectorsforoutput(y)andnonfixedinputs(NF).XFreferstotheinputsthatarequasifixed.Thederiveddemandfortimberisdefinedby
?Rπ/?PT=TD=f(Py,PNF,XF).(11)
Thederivedsupplyforwoodproductsisdefinedas
?Rπ/?Pyi=Ys=f(Py,PNF,XF).(12)
Defineaggregatedemandforwoodproducts(Y)asafunctionofZ,avectorof
variablesreflectinggeneraleconomicactivity,constructionactivity,otherdemandshifters,andownprice:
YiD=f(Py,Z).
(13)
Basedonequations(11)and(12),areduced-formmodelforwoodproductspricesisdefinedas
Pyi=f(Px,XF,Z).(14)
Ispecifytimbersupplyasaninventoryadjustmentproblemonprivatelandsandan
administrativelydeterminedtimberharvestlevelonfederallands(TFED):
Ts=f(PT,PW,I)+TFED.(
15)
EffectsofWoodProductsMarketsandForestPoliciesonLandUseChange
8
Theprivatelandsupplyassumesthattimbersupplyisaffectedbycurrentprices
(includingotherinputprices)andfutureprices,proxiedbytheleveloftimber
inventories(I),abiophysicalscarcitymeasure.BecauseIisalteredbylanduse
outcomes,Ineedtoaccountforthisfeedbackinthesimulations.Thereduced-form
equationfortimberpricesisdefinedbyequations(11)and(15):
PT=f(PY,PW,XF,I,TFED).(
16)
Anestimatingequationfortimberpricessubstitutesequation(14)forPYiinequation(16):
PT=f(PW,XF,I,TFED,Z),(17)
withasetofexogenousvariablesontheright-handsiderelatedtothepricesofotherinputs(PW),fixedfactorsofproduction(XF),timberinventories(I),federaltimber
policy(TFED),andasetofwoodproductdemandshifters(Z).
3.DataandEstimation
Thefourbinarylandshareequations,(5a),(5b),(7a),and(7b),combinedwith
structuralconstraints,definethelandusetransitionmodel(equation(2)).Land
transitionsharesareconstructedfromplottransitionsrecordedbytheUSDA’sNRIandexpanded(usingaerialexpansionfactors)todefinetransitionsharesatthe
countylevelforsixfive-yearperiodsstartingin1982andendingin2012.Share
equations,wherethedependentvariableisboundedby[0,1],areestimatedas
fractionalresponseregressionmodels(PapkeandWoolridge1996;Woolridge2002)usinggeneralizedmethodsofmomentsestimation(implementedinRusingtheGLMprocedurewithaquasibinomialspecification;RCoreTeam2013).Usingthefractionalresponseapproachratherthanthemorecommonlog-oddstransformationobviatestheneedtomodifyextremevalues(0or1)forestimation.Toaddressthe
heteroscedasticitythatarisesfromtheboundednatureofthedependentvariable,
regressionsareweightedbythelandareaoftheinitialuseineachequation.Thefourshareequationsareformulateda
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年建筑工程公司與施工方分包合同
- 2024年慶典花卉租賃合同
- 2024年度環(huán)保設(shè)備生產(chǎn)與安裝合同
- 2024年企業(yè)間關(guān)于虛擬現(xiàn)實(shí)技術(shù)研發(fā)合同
- 2024年度BIM模型能耗分析與優(yōu)化服務(wù)合同
- 2024國(guó)有林業(yè)企業(yè)與農(nóng)村集體組織土地承包合同
- 2024年家庭遺產(chǎn)分配協(xié)議
- 2024年度金融科技合作協(xié)議
- 2024酒店布草采購(gòu)合同
- 2024年度離婚財(cái)產(chǎn)分配合同:涉及三個(gè)未成年子女的撫養(yǎng)權(quán)
- 合伙開工廠合同范例
- 二年級(jí)上冊(cè)《生態(tài) 生命 安全》教案
- 綿陽(yáng)市高中2022級(jí)(2025屆)高三第一次診斷性考試(一診)地理試卷
- 《酒泉市旅游民宿高質(zhì)量發(fā)展特征、面臨的問(wèn)題及完善策略》
- 無(wú)人機(jī)租賃合同
- 《光伏電站運(yùn)行與維護(hù)》試題及答案一
- 輸血科三基模擬題(含參考答案)
- 2024下半年國(guó)家藥品監(jiān)督管理局藥品審評(píng)中心編制內(nèi)人員招聘15人歷年高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 全國(guó)教師管理信息系統(tǒng)-業(yè)務(wù)功能培訓(xùn)(省級(jí)培訓(xùn)材料)
- 2024年貴州省高職(專科)分類考試招收中職畢業(yè)生文化綜合考試語(yǔ)文試題
-
評(píng)論
0/150
提交評(píng)論