版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濟南歷下區(qū)2023-2024學年中考押題數學預測卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.據悉,超級磁力風力發(fā)電機可以大幅度提升風力發(fā)電效率,但其造價高昂,每座磁力風力發(fā)電機,其建造花費估計要5300萬美元,“5300萬”用科學記數法可表示為()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×1082.從1、2、3、4、5、6這六個數中隨機取出一個數,取出的數是3的倍數的概率是()A. B. C. D.3.把多項式x2+ax+b分解因式,得(x+1)(x-3),則a、b的值分別是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-34.計算tan30°的值等于()A.3B.33C.335.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是()A. B. C. D.6.某小組在“用頻率估計概率”的試驗中,統(tǒng)計了某種結果出現的頻率,繪制了如圖所示的折線圖,那么符合這一結果的試驗最有可能的是()A.在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”B.從一副撲克牌中任意抽取一張,這張牌是“紅色的”C.擲一枚質地均勻的硬幣,落地時結果是“正面朝上”D.擲一個質地均勻的正六面體骰子,落地時面朝上的點數是67.對于反比例函數y=﹣2xA.圖象分布在第二、四象限B.當x>0時,y隨x的增大而增大C.圖象經過點(1,﹣2)D.若點A(x1,y1),B(x2,y2)都在圖象上,且x1<x2,則y1<y28.計算的結果等于()A.-5 B.5 C. D.9.將拋物線y=x2﹣x+1先向左平移2個單位長度,再向上平移3個單位長度,則所得拋物線的表達式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+410.如圖,在平面直角坐標系中,把△ABC繞原點O旋轉180°得到△CDA,點A,B,C的坐標分別為(﹣5,2),(﹣2,﹣2),(5,﹣2),則點D的坐標為()A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)11.如果-a=-aA.a>0 B.a≥0 C.a≤0 D.a<012.關于反比例函數,下列說法正確的是()A.函數圖像經過點(2,2); B.函數圖像位于第一、三象限;C.當時,函數值隨著的增大而增大; D.當時,.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算(﹣a)3?a2的結果等于_____.14.如圖,正比例函數y1=k1x和反比例函數y2=的圖象交于A(﹣1,2),B(1,﹣2)兩點,若y1>y2,則x的取值范圍是_____.15.計算:3﹣1﹣30=_____.16.假期里小菲和小琳結伴去超市買水果,三次購買的草莓價格和數量如下表:價格/(元/kg)
12
10
8
合計/kg
小菲購買的數量/kg
2
2
2
6
小琳購買的數量/kg
1
2
3
6
從平均價格看,誰買得比較劃算?()A.一樣劃算B.小菲劃算C.小琳劃算D.無法比較17.如圖,在Rt△ABC中,∠ACB=90°,點D、E、F分別是AB、AC、BC的中點,若CD=5,則EF的長為________.18.因式分解:4ax2﹣4ay2=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖所示,已知一次函數(k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(m≠0)的圖象在第一象限交于C點,CD垂直于x軸,垂足為D.若OA=OB=OD=1.(1)求點A、B、D的坐標;(2)求一次函數和反比例函數的解析式.20.(6分)有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數圖象,請結合圖象,回答下列問題:(1)A、B兩點之間的距離是米,甲機器人前2分鐘的速度為米/分;(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數解析式;(3)若線段FG∥x軸,則此段時間,甲機器人的速度為米/分;(4)求A、C兩點之間的距離;(5)若前3分鐘甲機器人的速度不變,直接寫出兩機器人出發(fā)多長時間相距28米.21.(6分)如圖,在4×4的正方形方格中,△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上.填空:∠ABC=°,BC=;判斷△ABC與△DEF是否相似,并證明你的結論.22.(8分)拋物線y=﹣x2+bx+c(b,c均是常數)經過點O(0,0),A(4,4),與x軸的另一交點為點B,且拋物線對稱軸與線段OA交于點P.(1)求該拋物線的解析式和頂點坐標;(2)過點P作x軸的平行線l,若點Q是直線上的動點,連接QB.①若點O關于直線QB的對稱點為點C,當點C恰好在直線l上時,求點Q的坐標;②若點O關于直線QB的對稱點為點D,當線段AD的長最短時,求點Q的坐標(直接寫出答案即可).23.(8分)如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標注相應的字母:過點C作直線CE,使CE⊥BC于點C,交BD的延長線于點E,連接AE;(2)求證:四邊形ABCE是矩形.24.(10分)如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,(1)求證:△ACE≌△BCD;(2)若DE=13,BD=12,求線段AB的長.25.(10分)先化簡,再求值:,其中x滿足x2-2x-2=0.26.(12分)觀察與思考:閱讀下列材料,并解決后面的問題在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結論和有關定理就可以求出其余三個未知元素.根據上述材料,完成下列各題.(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=;AC=;(2)自從去年日本政府自主自導“釣魚島國有化”鬧劇以來,我國政府靈活應對,現如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結果精確到0.01,≈2.449)27.(12分)如圖,在平行四邊形中,的平分線與邊相交于點.(1)求證;(2)若點與點重合,請直接寫出四邊形是哪種特殊的平行四邊形.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:5300萬=53000000=.故選C.【點睛】在把一個絕對值較大的數用科學記數法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數的整數位數少1(也可以通過小數點移位來確定).2、B【解析】考點:概率公式.專題:計算題.分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發(fā)生的概率.解答:解:從1、2、3、4、5、6這六個數中隨機取出一個數,共有6種情況,取出的數是3的倍數的可能有3和6兩種,故概率為2/6="1/"3.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)="m"/n.3、B【解析】分析:根據整式的乘法,先還原多項式,然后對應求出a、b即可.詳解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故選B.點睛:此題主要考查了整式的乘法和因式分解的關系,利用它們之間的互逆運算的關系是解題關鍵.4、C【解析】tan30°=335、D【解析】試題分析:A.是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項錯誤;C.是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項正確.故選D.考點:軸對稱圖形.6、D【解析】
根據統(tǒng)計圖可知,試驗結果在0.16附近波動,即其概率P≈0.16,計算四個選項的概率,約為0.16者即為正確答案.【詳解】根據圖中信息,某種結果出現的頻率約為0.16,在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”的概率為≈0.67>0.16,故A選項不符合題意,從一副撲克牌中任意抽取一張,這張牌是“紅色的”概率為≈0.48>0.16,故B選項不符合題意,擲一枚質地均勻的硬幣,落地時結果是“正面朝上”的概率是=0.5>0.16,故C選項不符合題意,擲一個質地均勻的正六面體骰子,落地時面朝上的點數是6的概率是≈0.16,故D選項符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數與總情況數之比.熟練掌握概率公式是解題關鍵.7、D【解析】
根據反比例函數圖象的性質對各選項分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項正確;B.k=?2<0,當x>0時,y隨x的增大而增大,故本選項正確;C.∵-2D.若點A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項錯誤.故選:D.【點睛】考查了反比例函數的圖象與性質,掌握反比例函數的性質是解題的關鍵.8、A【解析】
根據有理數的除法法則計算可得.【詳解】解:15÷(-3)=-(15÷3)=-5,
故選:A.【點睛】本題主要考查有理數的除法,解題的關鍵是掌握有理數的除法法則:兩數相除,同號得正,異號得負,并把絕對值相除.9、A【解析】
先將拋物線解析式化為頂點式,左加右減的原則即可.【詳解】y=x當向左平移2個單位長度,再向上平移3個單位長度,得y=x-故選A.【點睛】本題考查二次函數的平移;掌握平移的法則“左加右減”,二次函數的平移一定要將解析式化為頂點式進行;10、A【解析】分析:依據四邊形ABCD是平行四邊形,即可得到BD經過點O,依據B的坐標為(﹣2,﹣2),即可得出D的坐標為(2,2).詳解:∵點A,C的坐標分別為(﹣5,2),(5,﹣2),∴點O是AC的中點,∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形,∴BD經過點O,∵B的坐標為(﹣2,﹣2),∴D的坐標為(2,2),故選A.點睛:本題主要考查了坐標與圖形變化,圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.11、C【解析】
根據絕對值的性質:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,1的絕對值是1.若|-a|=-a,則可求得a的取值范圍.注意1的相反數是1.【詳解】因為|-a|≥1,所以-a≥1,那么a的取值范圍是a≤1.故選C.【點睛】絕對值規(guī)律總結:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,1的絕對值是1.12、C【解析】
直接利用反比例函數的性質分別分析得出答案.【詳解】A、關于反比例函數y=-,函數圖象經過點(2,-2),故此選項錯誤;B、關于反比例函數y=-,函數圖象位于第二、四象限,故此選項錯誤;C、關于反比例函數y=-,當x>0時,函數值y隨著x的增大而增大,故此選項正確;D、關于反比例函數y=-,當x>1時,y>-4,故此選項錯誤;故選C.【點睛】此題主要考查了反比例函數的性質,正確掌握相關函數的性質是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、﹣a5【解析】
根據冪的乘方和積的乘方運算法則計算即可.【詳解】解:(-a)3?a2=-a3?a2=-a3+2=-a5.故答案為:-a5.【點睛】本題考查了冪的乘方和積的乘方運算.14、x<﹣2或0<x<2【解析】
仔細觀察圖像,圖像在上面的函數值大,圖像在下面的函數值小,當y2>y2,即正比例函數的圖像在上,反比例函數的圖像在下時,根據圖像寫出x的取值范圍即可.【詳解】解:如圖,結合圖象可得:①當x<﹣2時,y2>y2;②當﹣2<x<0時,y2<y2;③當0<x<2時,y2>y2;④當x>2時,y2<y2.綜上所述:若y2>y2,則x的取值范圍是x<﹣2或0<x<2.故答案為x<﹣2或0<x<2.【點睛】本題考查了圖像法解不等式,解題的關鍵是仔細觀察圖像,全面寫出符合條件的x的取值范圍.15、﹣.【解析】
原式利用零指數冪、負整數指數冪法則計算即可求出值.【詳解】原式=﹣1=﹣.故答案是:﹣.【點睛】考查了實數的運算,熟練掌握運算法則是解本題的關鍵.16、C【解析】試題分析:根據題意分別求出兩人的平均價格,然后進行比較.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,則小琳劃算.考點:平均數的計算.17、5【解析】
已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應等于AB的一半.【詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【點睛】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關鍵.18、4a(x﹣y)(x+y)【解析】
首先提取公因式4a,再利用平方差公式分解因式即可.【詳解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案為4a(x-y)(x+y).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)A(-1,0),B(0,1),D(1,0)(2)一次函數的解析式為反比例函數的解析式為【解析】解:(1)∵OA=OB=OD=1,∴點A、B、D的坐標分別為A(-1,0),B(0,1),D(1,0)。(2)∵點A、B在一次函數(k≠0)的圖象上,∴,解得?!嘁淮魏瘮档慕馕鍪綖椤!唿cC在一次函數y=x+1的圖象上,且CD⊥x軸,∴點C的坐標為(1,2)。又∵點C在反比例函數(m≠0)的圖象上,∴m=1×2=2。∴反比例函數的解析式為。(1)根據OA=OB=OD=1和各坐標軸上的點的特點易得到所求點的坐標。(2)將A、B兩點坐標分別代入,可用待定系數法確定一次函數的解析式,由C點在一次函數的圖象上可確定C點坐標,將C點坐標代入可確定反比例函數的解析式。20、(1)距離是70米,速度為95米/分;(2)y=35x﹣70;(3)速度為60米/分;(4)=490米;(5)兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.【解析】
(1)當x=0時的y值即為A、B兩點之間的距離,由圖可知當=2時,甲追上了乙,則可知(甲速度-乙速度)×時間=A、B兩點之間的距離;(2)由題意求解E、F兩點坐標,再用待定系數法求解直線解析式即可;(3)由圖可知甲、乙速度相同;(4)由乙的速度和時間可求得BC之間的距離,再加上AB之間的距離即為AC之間的距離;(5)分0-2分鐘、2-3分鐘和4-7分鐘三段考慮.【詳解】解:(1)由圖象可知,A、B兩點之間的距離是70米,甲機器人前2分鐘的速度為:(70+60×2)÷2=95米/分;(2)設線段EF所在直線的函數解析式為:y=kx+b,∵1×(95﹣60)=35,∴點F的坐標為(3,35),則2k+b=03k+b=35,解得k=35∴線段EF所在直線的函數解析式為y=35x﹣70;(3)∵線段FG∥x軸,∴甲、乙兩機器人的速度都是60米/分;(4)A、C兩點之間的距離為70+60×7=490米;(5)設前2分鐘,兩機器人出發(fā)x分鐘相距21米,由題意得,60x+70﹣95x=21,解得,x=1.2,前2分鐘﹣3分鐘,兩機器人相距21米時,由題意得,35x﹣70=21,解得,x=2.1.4分鐘﹣7分鐘,直線GH經過點(4,35)和點(7,0),設線段GH所在直線的函數解析式為:y=kx+b,則,4k+b=357k+b=0,解得k=-則直線GH的方程為y=-353x+當y=21時,解得x=4.6,答:兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.【點睛】本題考查了一次函數的應用,讀懂圖像是解題關鍵..21、(1)(2)△ABC∽△DEF.【解析】
(1)根據已知條件,結合網格可以求出∠ABC的度數,根據,△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上,利用勾股定理即可求出線段BC的長;
(2)根據相似三角形的判定定理,夾角相等,對應邊成比例即可證明△ABC與△DEF相似.【詳解】(1)故答案為(2)△ABC∽△DEF.證明:∵在4×4的正方形方格中,∴∠ABC=∠DEF.∵∴∴△ABC∽△DEF.【點睛】考查勾股定理以及相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關鍵.22、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);【解析】
1)把0(0,0),A(4,4v3)的坐標代入y=﹣x2+bx+c,轉化為解方程組即可.(2)先求出直線OA的解析式,點B坐標,拋物線的對稱軸即可解決問題.(3)①如圖1中,點O關于直線BQ的對稱點為點C,當點C恰好在直線l上時,首先證明四邊形BOQC是菱形,設Q(m,),根據OQ=OB=5,可得方程,解方程即可解決問題.②如圖2中,由題意點D在以B為圓心5為半徑的OB上運動,當A,D、B共線時,線段AD最小,設OD與BQ交于點H.先求出D、H兩點坐標,再求出直線BH的解析式即可解決問題.【詳解】(1)把O(0,0),A(4,4)的坐標代入y=﹣x2+bx+c,得,解得,∴拋物線的解析式為y=﹣x2+5x=﹣(x﹣)2+.所以拋物線的頂點坐標為(,);(2)①由題意B(5,0),A(4,4),∴直線OA的解析式為y=x,AB==7,∵拋物線的對稱軸x=,∴P(,).如圖1中,點O關于直線BQ的對稱點為點C,當點C恰好在直線l上時,∵QC∥OB,∴∠CQB=∠QBO=∠QBC,∴CQ=BC=OB=5,∴四邊形BOQC是平行四邊形,∵BO=BC,∴四邊形BOQC是菱形,設Q(m,),∴OQ=OB=5,∴m2+()2=52,∴m=±,∴點Q坐標為(﹣,)或(,);②如圖2中,由題意點D在以B為圓心5為半徑的⊙B上運動,當A、D、B共線時,線段AD最小,設OD與BQ交于點H.∵AB=7,BD=5,∴AD=2,D(,),∵OH=HD,∴H(,),∴直線BH的解析式為y=﹣x+,當y=時,x=0,∴Q(0,).【點睛】本題二次函數與一次函數的關系、幾何動態(tài)問題、最值問題、作輔助圓解決問題,難度較大,需積極思考,靈活應對.23、(1)見解析;(2)見解析.【解析】
(1)根據題意作圖即可;
(2)先根據BD為AC邊上的中線,AD=DC,再證明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四邊形ABCE是矩形.【詳解】(1)解:如圖所示:E點即為所求;(2)證明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD為AC邊上的中線,∴AD=DC,在△ABD和△CED中,∴△ABD≌△CED(AAS),∴AB=EC,∴四邊形ABCE是平行四邊形,∵∠ABC=90°,∴平行四邊形ABCE是矩形.【點睛】本題考查了全等三角形的判定與性質與矩形的性質,解題的關鍵是熟練的掌握全等三角形的判定與性質與矩形的性質.24、(3)證明見解析;(3)AB=3.【解析】
(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根據SAS推出△ACE≌△BCD即可;(3)求出AD=5,根據全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【詳解】證明:(3)如圖,∵△ACB與△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,則∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水利工程石方施工合同
- 物流行業(yè)就業(yè)協(xié)議
- 船舶制造科技合同管理辦法
- 餐飲業(yè)生管人才招聘協(xié)議
- 警用摩托車駕駛員聘用協(xié)議
- 紡織品運輸貨車租賃合同樣本
- 高速公路建設架子工合同
- 信息技術升級顧問聘用合同
- 建筑物無障礙設施工程合同模板
- 旅游景區(qū)管理員招聘協(xié)議
- 妊娠合并闌尾炎的護理查房
- 家長進課堂關于人工智能的知識介紹
- 《利水滲濕藥茯苓》課件
- 梅奧診所簡介中文課件
- 第四講 變電站倒閘操作
- 醫(yī)務人員輻射事故應急處理培訓課件
- 機械工程測試技術-課后習題及答案
- 高鐵站消防培訓課件
- 2024年初級會計師《初級會計實務》押題卷
- (期末押題卷)期末綜合測試提高卷-2023-2024學年六年級上冊科學高頻易錯期末必刷卷(蘇教版)
- 電視行業(yè)年度報告
評論
0/150
提交評論