




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
數(shù)學(xué)試卷第數(shù)學(xué)試卷第頁)絕密★啟用前邯鄲市2024屆高三年級保溫試題數(shù)學(xué)注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號等信息填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑。如需改動,用橡皮擦干凈后,再選涂其他答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上。寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,為第一象限角,則的值為 A. B. C. D.2.命題“,”的否定是 A., B., C., D.,3.的展開式中,常數(shù)項為 A.60 B. C.120 D.4.中國地震臺網(wǎng)測定:2024年4月3日,\t"/item/4%C2%B73%E8%8A%B1%E8%8E%B2%E5%9C%B0%E9%9C%87/_blank"中國\t"/item/4%C2%B73%E8%8A%B1%E8%8E%B2%E5%9C%B0%E9%9C%87/_blank"臺灣\t"/item/4%C2%B73%E8%8A%B1%E8%8E%B2%E5%9C%B0%E9%9C%87/_blank"花蓮縣海域發(fā)生里氏7.3級地震.已知地震時釋放出的能量E(單位:焦耳)與地震里氏震級M之間的關(guān)系為.2011年3月11日,日本東北部海域發(fā)生里氏9.0級地震,則它所釋放出來的能量約是\t"/item/4%C2%B73%E8%8A%B1%E8%8E%B2%E5%9C%B0%E9%9C%87/_blank"中國\t"/item/4%C2%B73%E8%8A%B1%E8%8E%B2%E5%9C%B0%E9%9C%87/_blank"臺灣\t"/item/4%C2%B73%E8%8A%B1%E8%8E%B2%E5%9C%B0%E9%9C%87/_blank"花蓮縣海域發(fā)生里氏7.3級地震的多少倍? A.98 B.105 C.355 D.4635.已知,是圓:上的兩個點,且,為的中點,Q為直線上的一點,則的最小值為 A. B. C. D.6.某疾病全球發(fā)病率為0.03%,該疾病檢測的漏診率(患病者判定為陰性的概率)為5%,檢測的誤診率(未患病者判定為陽性的概率)為1%,則某人檢測成陽性的概率約為 A.0.03% B.0.99% C.1.03% D.2.85% A. B. C. D. A. B. C. D.二、選擇題:本題共3小題,每小題6分,共18分。在每小題給出的選項中,有多項符合題目要求。全部選對的得6分,部分選對的得部分分,有選錯的得0分。9.已知復(fù)數(shù),是其共軛復(fù)數(shù),則下列命題正確的是A. B.若,則的最小值為1C. D.若是關(guān)于的方程的一個根,則10.如圖,將一塊邊長為的正方形鐵片上有四塊陰影部分,將這些陰影部分裁下來,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,下列說法正確的是A.當(dāng)時,正四棱錐的側(cè)面積為B.當(dāng)時,正四棱錐的體積為 C.當(dāng)時,正四棱錐外接球的體積為 D.正四棱錐的體積最大值為11.定義在上的函數(shù)滿足:,且,則下列結(jié)論正確的是A. B.是的對稱中心C.是偶函數(shù) D.三、填空題:本題共3小題,每小題5分,共15分。12.已知向量,若向量a在上的投影向量為,且a與不共線,請寫出一個符合條件的向量a的坐標(biāo)________.13.記為等比數(shù)列的前項的和,若,,則________.14.若不等式恒成立,則a的取值范圍為________.四、解答題:本題共5小題,共77分。解答應(yīng)寫出文字說明、證明過程或演算步驟。15.(13分)已知函數(shù).(1)當(dāng)時,求函數(shù)在處的切線方程;(2)若為增函數(shù),求的取值范圍.16.(15分)某人投擲兩枚骰子,取其中一枚的點數(shù)記為點的橫坐標(biāo),另一枚的點數(shù)記為點的縱坐標(biāo),令事件A=“”,事件B=“為奇數(shù)”.(1)證明:事件A、B相互獨立;(2)若連續(xù)拋擲這兩枚骰子三次,求點在圓內(nèi)的次數(shù)的分布列與期望.17.(15分)如圖,已知菱形和菱形的邊長均為2,,,、分別為、上的動點,且.(1)證明:平面;(2)當(dāng)?shù)拈L最小時,求平面與平面的夾角余弦值.18.(17分)動點到定點的距離與它到直線的距離之比為,記點的軌跡為曲線.若為上的點,且.(1)求曲線的軌跡方程;(2)已知,,直線交曲線于、兩點,點在軸上方.①求證:為定值;②若,直線是否過定點,若是,求出該定點坐標(biāo),若不是,請說明理由.19.(17分)柯西是一位偉大的法國數(shù)學(xué)家,許多數(shù)學(xué)定理和結(jié)論都以他的名字命名,柯西不等式就是其中之一,它在數(shù)學(xué)的眾多分支中有精彩應(yīng)用,柯西不等式的一般形式為:設(shè),則當(dāng)且僅當(dāng)或存在一個數(shù),使得時,等號成立.(1)請你寫出柯西不等式的二元形式;(2)設(shè)是棱長為的正四面體ABCD內(nèi)的任意一點,點到四個面的距離分別為d1、d2、d3、d4,求的最小值;(3)已知無窮正數(shù)數(shù)列滿足:①存在,使得;②對任意正整數(shù)、,均有.求證:對任意,,恒有.邯鄲市2024屆高三年級保溫試題高三數(shù)學(xué)參考答案一、選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個選項中,只有一項是符合題目要求的。題號12345678答案ADACBCAB二、選擇題:本題共3小題,每小題6分,共18分。在每小題給出的選項中,有多項符合題目要求。全部選對的得6分,部分選對的得部分分,有選錯的得0分。題號91011答案BCBCDABD三、填空題:本題共3小題,每小題5分,共15分。12.(答案不唯一,設(shè)滿足即可,但不得分)13.14.四、解答題:本題共5小題,共77分。解答應(yīng)寫出文字說明、證明過程或演算步驟。15.(1)當(dāng)時,,求導(dǎo)得:故切線斜率,又,所以切線方程為,即切線方程為. 6分(2)依題意,為增函數(shù),等價于,即設(shè),求導(dǎo)得:,設(shè)()易知,在上單調(diào)遞減,且,當(dāng)時,,,當(dāng)時,,,所以在上單調(diào)遞增,上單調(diào)遞減,所以,所以.當(dāng)時,不恒等于0,滿足條件.所以的取值范圍為. 13分16.(1)證明:由題意可知點的坐標(biāo)有種,其中事件所包含的基本事件有,,,,,,6種,則,事件所包含的基本事件有種,則,積事件有,,,3種,則所以.所以事件A、B相互獨立 7分(2)點P在圓內(nèi)的概率為,由題意可知,,,,,,所以,X的分布列為X0123P所以. 15分17.(1)方法一:延長交的延長線于點,連接,因為,所以,所以,又因為,所以,所以,由于平面,平面,所以平面 6分方法二:在上取點,使得,則,由于平面EDC,平面EDC所以平面EDC,因為,所以,所以,由于,則,由于平面EDC,平面EDC所以平面EDC,又因為,所以平面平面,由于平面,所以平面 6分(2)方法一:向量法取中點為,連接,,因為四邊形為菱形且,所以是等邊三角形,則,且,同理可得,且,又因為,所以為等邊三角形,則,因為,所以平面,如圖,以點O為原點,以O(shè)A、OB、垂直于平面ABCD且過點O的直線分別為x,y,z軸,建立空間直角坐標(biāo)系,則,,,,則,,,,設(shè),則,,則故,當(dāng)時,最小,此時,,設(shè)平面的法向量為,則,則,令,可得平面的法向量為同理可得,平面的法向量設(shè)平面與平面的夾角為,則,所以平面與平面的夾角余弦值為. 15分方法二:基底法設(shè),在中,,由余弦定理得:,所以設(shè),則,,所以,,當(dāng)時,的長度為最小.此時分為中點,取的中點,連接,易知,,所以,,所以為二面角的平面角,易求得,設(shè)平面與平面的夾角為,所以,所以平面與平面的夾角余弦值為. 15分18.(1)設(shè),由題意得:,化簡得:.所以曲線的方程為. 4分(2)①由題知,、分別為橢圓的左、右頂點,因為點在橢圓上,所以,則. 9分②直線l恒過定點.理由如下:由①知,因為,所以由題可知直線l的斜率不為0,設(shè)直線l:,聯(lián)立,得,,設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨時供應(yīng)合同范本
- 企業(yè)修路合同范本
- 2025年衡水駕駛員貨運從業(yè)資格證模擬考試題
- 中介交易服務(wù)合同范本
- 會展項目服務(wù)合同范例
- 2025年昆明道路貨運從業(yè)資格證模擬考試官方題下載
- 修車配件合同范本
- 出租合同范本版
- 農(nóng)村水源地租賃合同范本
- 與演員合作合同范本
- 管理統(tǒng)計學(xué)課件
- 博物館保安職責(zé)(4篇)
- 2024裝配式混凝土建筑工人職業(yè)技能標(biāo)準(zhǔn)
- 2025部編版九年級語文下冊全冊教學(xué)設(shè)計
- 假性動脈瘤護(hù)理
- 2024-2030年中國留學(xué)服務(wù)行業(yè)市場前景預(yù)測及發(fā)展戰(zhàn)略規(guī)劃分析報告
- 消火栓及自動噴水滅火系統(tǒng)裝置技術(shù)規(guī)格書
- 2024年體育競技:運動員與俱樂部保密協(xié)議
- 小學(xué)數(shù)學(xué)新教材培訓(xùn)
- 初中作文課件教學(xué)課件
- 軍隊文職(會計學(xué))考試(重點)題庫200題(含答案解析)
評論
0/150
提交評論