版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆湖南省茶陵縣中考數(shù)學全真模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.102.在△ABC中,∠C=90°,tanA=125,△ABC的周長為60,那么△ABCA.60 B.30 C.240 D.1203.某車間需加工一批零件,車間20名工人每天加工零件數(shù)如表所示:每天加工零件數(shù)45678人數(shù)36542每天加工零件數(shù)的中位數(shù)和眾數(shù)為()A.6,5 B.6,6 C.5,5 D.5,64.在同一直角坐標系中,函數(shù)y=kx-k與(k≠0)的圖象大致是()A. B.C. D.5.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,﹣4),頂點C在x軸的負半軸上,函數(shù)y=(x<0)的圖象經(jīng)過菱形OABC中心E點,則k的值為()A.6 B.8 C.10 D.126.下列各式中,正確的是()A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.7.下列運算結果正確的是()A.(x3﹣x2+x)÷x=x2﹣xB.(﹣a2)?a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a28.如果與互補,與互余,則與的關系是()A. B.C. D.以上都不對9.某單位組織職工開展植樹活動,植樹量與人數(shù)之間關系如圖,下列說法不正確的是()A.參加本次植樹活動共有30人 B.每人植樹量的眾數(shù)是4棵C.每人植樹量的中位數(shù)是5棵 D.每人植樹量的平均數(shù)是5棵10.計算4×(–9)的結果等于A.32 B.–32 C.36 D.–36二、填空題(本大題共6個小題,每小題3分,共18分)11.如果一個三角形有一條邊上的高等于這條邊的一半,那么我們把這個三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜邊AB=5,則它的周長等于_____.12.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與軸相交于點A、B,若其對稱軸為直線x=2,則OB–OA的值為_______.13.王英同學從A地沿北偏西60°方向走100米到B地,再從B地向正南方向走200米到C地,此時王英同學離A地的距離是_____米.14.如下圖,在直徑AB的半圓O中,弦AC、BD相交于點E,EC=2,BE=1.則cos∠BEC=________.15.如圖,反比例函數(shù)y=的圖象上,點A是該圖象第一象限分支上的動點,連結AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,AC與x軸交于點P,連結BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____.16.如圖,正方形ABCD的邊長為6,E,F(xiàn)是對角線BD上的兩個動點,且EF=,連接CE,CF,則△CEF周長的最小值為_____.三、解答題(共8題,共72分)17.(8分)近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標,某初中學校了解學生的創(chuàng)新意識,組織了全校學生參加創(chuàng)新能力大賽,從中抽取了部分學生成績,分為5組:A組50~60;B組60~70;C組70~80;D組80~90;E組90~100,統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.抽取學生的總人數(shù)是人,扇形C的圓心角是°;補全頻數(shù)直方圖;該校共有2200名學生,若成績在70分以下(不含70分)的學生創(chuàng)新意識不強,有待進一步培養(yǎng),則該校創(chuàng)新意識不強的學生約有多少人?18.(8分)解不等式組:并寫出它的所有整數(shù)解.19.(8分)如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點E為AB的中點,DE∥BC.(1)求證:BD平分∠ABC;(2)連接EC,若∠A=30°,DC=,求EC的長.20.(8分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結論;(2)求證:(3)若BC=AB,求tan∠CDF的值.21.(8分)在一次數(shù)學活動課上,老師讓同學們到操場上測量旗桿的高度,然后回來交流各自的測量方法.小芳的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認為這種測量方法是否可行?請說明理由.22.(10分)先化簡:,再請你選擇一個合適的數(shù)作為x的值代入求值.23.(12分)如圖,在矩形ABCD中,對角線AC,BD相交于點O.(1)畫出△AOB平移后的三角形,其平移后的方向為射線AD的方向,平移的距離為AD的長.(2)觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請證明你的結論.24.由于霧霾天氣頻發(fā),市場上防護口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產甲、乙兩種型號的防霧霾口罩共20萬只,且所有產品當月全部售出,原料成本、銷售單價及工人生產提成如表:若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產品分別是多少萬只?公司實行計件工資制,即工人每生產一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產提成總額)不超過239萬元,應怎樣安排甲、乙兩種型號的產量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,
因為BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面積=CF?CE=8;
故選:C.點睛:
本題利用了:①折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質,平行線的性質,三角形的面積公式等知識點.2、D【解析】
由tanA的值,利用銳角三角函數(shù)定義設出BC與AC,進而利用勾股定理表示出AB,由周長為60求出x的值,確定出兩直角邊,即可求出三角形面積.【詳解】如圖所示,由tanA=125設BC=12x,AC=5x,根據(jù)勾股定理得:AB=13x,由題意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,則△ABC面積為120,故選D.【點睛】此題考查了解直角三角形,銳角三角函數(shù)定義,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.3、A【解析】
根據(jù)眾數(shù)、中位數(shù)的定義分別進行解答即可.【詳解】由表知數(shù)據(jù)5出現(xiàn)了6次,次數(shù)最多,所以眾數(shù)為5;因為共有20個數(shù)據(jù),所以中位數(shù)為第10、11個數(shù)據(jù)的平均數(shù),即中位數(shù)為=6,故選A.【點睛】本題考查了眾數(shù)和中位數(shù)的定義.用到的知識點:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).4、D【解析】
根據(jù)k值的正負性分別判斷一次函數(shù)y=kx-k與反比例函數(shù)(k≠0)所經(jīng)過象限,即可得出答案.【詳解】解:有兩種情況,當k>0是時,一次函數(shù)y=kx-k的圖象經(jīng)過一、三、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過一、三象限;當k<0時,一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過二、四象限;根據(jù)選項可知,D選項滿足條件.故選D.【點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象.正確這兩種圖象所經(jīng)過的象限是解題的關鍵.5、B【解析】
根據(jù)勾股定理得到OA==5,根據(jù)菱形的性質得到AB=OA=5,AB∥x軸,求得B(-8,-4),得到E(-4,-2),于是得到結論.【詳解】∵點A的坐標為(﹣3,﹣4),∴OA==5,∵四邊形AOCB是菱形,∴AB=OA=5,AB∥x軸,∴B(﹣8,﹣4),∵點E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,菱形的性質,勾股定理,正確的識別圖形是解題的關鍵.6、B【解析】
A.括號前是負號去括號都變號;B負次方就是該數(shù)次方后的倒數(shù),再根據(jù)前面兩個負號為正;C.兩個負號為正;D.三次根號和二次根號的算法.【詳解】A選項,﹣(x﹣y)=﹣x+y,故A錯誤;B選項,﹣(﹣2)﹣1=,故B正確;C選項,﹣,故C錯誤;D選項,22,故D錯誤.【點睛】本題考查去括號法則的應用,分式的性質,二次根式的算法,熟記知識點是解題的關鍵.7、C【解析】
根據(jù)多項式除以單項式法則、同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項法則計算可得.【詳解】A、(x3-x2+x)÷x=x2-x+1,此選項計算錯誤;B、(-a2)?a3=-a5,此選項計算錯誤;C、(-2x2)3=-8x6,此選項計算正確;D、4a2-(2a)2=4a2-4a2=0,此選項計算錯誤.故選:C.【點睛】本題主要考查整式的運算,解題的關鍵是掌握多項式除以單項式法則、同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項法則.8、C【解析】
根據(jù)∠1與∠2互補,∠2與∠1互余,先把∠1、∠1都用∠2來表示,再進行運算.【詳解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故選C.【點睛】此題主要記住互為余角的兩個角的和為90°,互為補角的兩個角的和為180度.9、D【解析】試題解析:A、∵4+10+8+6+2=30(人),∴參加本次植樹活動共有30人,結論A正確;B、∵10>8>6>4>2,∴每人植樹量的眾數(shù)是4棵,結論B正確;C、∵共有30個數(shù),第15、16個數(shù)為5,∴每人植樹量的中位數(shù)是5棵,結論C正確;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植樹量的平均數(shù)約是4.73棵,結論D不正確.故選D.考點:1.條形統(tǒng)計圖;2.加權平均數(shù);3.中位數(shù);4.眾數(shù).10、D【解析】
根據(jù)有理數(shù)的乘法法則進行計算即可.【詳解】故選:D.【點睛】考查有理數(shù)的乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘.二、填空題(本大題共6個小題,每小題3分,共18分)11、5+3或5+5.【解析】
分兩種情況討論:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分別依據(jù)勾股定理和三角形的面積公式,即可得到該三角形的周長為5+3或5+5.【詳解】由題意可知,存在以下兩種情況:(1)當一條直角邊是另一條直角邊的一半時,這個直角三角形是半高三角形,此時設較短的直角邊為a,則較長的直角邊為2a,由勾股定理可得:,解得:,∴此時較短的直角邊為,較長的直角邊為,∴此時直角三角形的周長為:;(2)當斜邊上的高是斜邊的一半是,這個直角三角形是半高三角形,此時設兩直角邊分別為x、y,這有題意可得:①,②S△=,∴③,由①+③得:,即,∴,∴此時這個直角三角形的周長為:.綜上所述,這個半高直角三角形的周長為:或.故答案為或.【點睛】(1)讀懂題意,弄清“半高三角形”的含義是解題的基礎;(2)根據(jù)題意,若直角三角形是“半高三角形”,則存在兩種情況:①一條直角邊是另一條直角邊的一半;②斜邊上的高是斜邊的一半;解題時這兩種情況都要討論,不要忽略了其中一種.12、4【解析】試題分析:設OB的長度為x,則根據(jù)二次函數(shù)的對稱性可得:點B的坐標為(x+2,0),點A的坐標為(2-x,0),則OB-OA=x+2-(x-2)=4.點睛:本題主要考查的就是二次函數(shù)的性質.如果二次函數(shù)與x軸的兩個交點坐標為(,0)和(,0),則函數(shù)的對稱軸為直線:x=.在解決二次函數(shù)的題目時,我們一定要注意區(qū)分點的坐標和線段的長度之間的區(qū)別,如果點在x的正半軸,則點的橫坐標就是線段的長度,如果點在x的負半軸,則點的橫坐標的相反數(shù)就是線段的長度.13、100【解析】先在直角△ABE中利用三角函數(shù)求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.解:如圖,作AE⊥BC于點E.∵∠EAB=30°,AB=100,∴BE=50,AE=50.∵BC=200,∴CE=1.在Rt△ACE中,根據(jù)勾股定理得:AC=100.即此時王英同學離A地的距離是100米.故答案為100.解一般三角形的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.14、【解析】分析:連接BC,則∠BCE=90°,由余弦的定義求解.詳解:連接BC,根據(jù)圓周角定理得,∠BCE=90°,所以cos∠BEC=.故答案為.點睛:本題考查了圓周角定理的余弦的定義,求一個銳角的余弦時,需要把這個銳角放到直角三角形中,再根據(jù)余弦的定義求解,而圓中直徑所對的圓周角是直角.15、(,)【解析】分析:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,則有△AOE≌△OCF,進而可得出AE=OF、OE=CF,根據(jù)角平分線的性質可得出,設點A的坐標為(a,)(a>0),由可求出a值,進而得到點A的坐標.詳解:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,如圖所示.∵△ABC為等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BP平分∠ABC,∴,∴.設點A的坐標為(a,),∴,解得:a=或a=-(舍去),∴=,∴點A的坐標為(,),故答案為:((,)).點睛:本題考查了反比例函數(shù)圖象上點的坐標特征、全等三角形的判定與性質、角平分線的性質以及等腰直角三角形性質的綜合運用,構造全等三角形,利用全等三角形的對應邊相等是解題的關鍵.16、2+4【解析】
如圖作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長最?。驹斀狻咳鐖D作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長最?。逤H=EF,CH∥EF,∴四邊形EFHC是平行四邊形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四邊形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周長的最小值=2+4,故答案為:2+4.【點睛】本題考查軸對稱﹣最短問題,正方形的性質、勾股定理、平行四邊形的判定和性質等知識,解題的關鍵是學會利用軸對稱解決最短問題.三、解答題(共8題,共72分)17、(1)300、144;(2)補全頻數(shù)分布直方圖見解析;(3)該校創(chuàng)新意識不強的學生約有528人.【解析】
(1)由D組頻數(shù)及其所占比例可得總人數(shù),用360°乘以C組人數(shù)所占比例可得;
(2)用總人數(shù)分別乘以A、B組的百分比求得其人數(shù),再用總人數(shù)減去A、B、C、D的人數(shù)求得E組的人數(shù)可得;
(3)用總人數(shù)乘以樣本中A、B組的百分比之和可得.【詳解】解:(1)抽取學生的總人數(shù)為78÷26%=300人,扇形C的圓心角是360°×=144°,故答案為300、144;(2)A組人數(shù)為300×7%=21人,B組人數(shù)為300×17%=51人,則E組人數(shù)為300﹣(21+51+120+78)=30人,補全頻數(shù)分布直方圖如下:(3)該校創(chuàng)新意識不強的學生約有2200×(7%+17%)=528人.【點睛】考查了頻數(shù)(率)分布直方圖:提高讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.也考查了用樣本估計總體.18、原不等式組的解集為,它的所有整數(shù)解為0,1.【解析】
先求出不等式組中每一個不等式的解集,再求出它們的公共部分,然后寫出它的所有整數(shù)解即可.【詳解】解:,解不等式①,得,解不等式②,得x<2,∴原不等式組的解集為,它的所有整數(shù)解為0,1.【點睛】本題主要考查了一元一次不等式組解集的求法.解一元一次不等式組的簡便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).19、(1)見解析;(2).【解析】
(1)直接利用直角三角形的性質得出,再利用DE∥BC,得出∠2=∠3,進而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的長,進而得出EC的長.【詳解】(1)證明:∵AD⊥DB,點E為AB的中點,∴.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴.【點睛】此題主要考查了直角三角形斜邊上的中線與斜邊的關系,正確得出DB,DE的長是解題關鍵.20、(1)∠CBD與∠CEB相等,證明見解析;(2)證明見解析;(3)tan∠CDF=.【解析】試題分析:(1)由AB是⊙O的直徑,BC切⊙O于點B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,從而可得∠A=∠CBD,結合∠A=∠CEB即可得到∠CBD=∠CEB;(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,從而可得△EBC∽△BDC,再由相似三角形的性質即可得到結論;(3)設AB=2x,結合BC=AB,AB是直徑,可得BC=3x,OB=OD=x,再結合∠ABC=90°,可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,從而可得△DCF∽△BCD,由此可得:==,這樣即可得到tan∠CDF=tan∠DBF==.試題解析:(1)∠CBD與∠CEB相等,理由如下:∵BC切⊙O于點B,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,(2)∵∠C=∠C,∠CEB=∠CBD,∴∠EBC=∠BDC,∴△EBC∽△BDC,∴;(3)設AB=2x,∵BC=AB,AB是直徑,∴BC=3x,OB=OD=x,∵∠ABC=90°,∴OC=x,∴CD=(-1)x,∵AO=DO,∴∠CDF=∠A=∠DBF,∴△DCF∽△BCD,∴==,∵tan∠DBF==,∴tan∠CDF=.點睛:解答本題第3問的要點是:(1)通過證∠CDF=∠A=∠DBF,把求tan∠CDF轉化為求tan∠DBF=;(2)通過證△DCF∽△BCD,得到.21、這種測量方法可行,旗桿的高為21.1米.【解析】分析:根據(jù)已知得出過F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性質得出即可.詳解:這種測量方法可行.理由如下:設旗桿高AB=x.過F作FG⊥AB于G,交CE于H(如圖).所以△AGF∽△EHF.因為FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得,即,所以x﹣1.1=20,解得x=21.1(米)答:旗桿的高為21.1米.點睛:此題主要考查了相似三角形的判定與性質,根據(jù)已知得出△AGF∽△EHF是解題關鍵.22、x﹣1,1.【解析】
先通分計算括號里的,再計算括號外的,最后根據(jù)分式性質,找一個恰當?shù)臄?shù)2(此數(shù)不唯一)代入化簡后的式子計算即可.【詳解】解:原式==x﹣1,根據(jù)分式的意義可知,x≠0,且x≠±1,當x=2時,原式=2﹣1=1.【點睛】本題主要考查分式的化簡求值,化簡過程中要注意運算順序,化簡結果是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒思維發(fā)散課程設計
- 最好的禮物中班課程設計
- 體育與健康理論課程設計
- 推動架機械制造課程設計
- 建筑工程施工 課程設計
- 整機裝配課程設計示波器
- 電力有限公司工作票和操作票管理辦法
- 服裝商品陳列課程設計
- 有道語文課程設計
- 智能家居系統(tǒng)應用與發(fā)展趨勢
- 2024年華夏銀行股份有限公司校園招聘考試試題附答案
- 趣識古文字智慧樹知到期末考試答案章節(jié)答案2024年吉林師范大學
- 格蘭氣吸精量播種機
- 舞臺搭建安全管理與風險評估
- 園林規(guī)劃設計-江南傳統(tǒng)庭園設計智慧樹知到期末考試答案章節(jié)答案2024年浙江農林大學
- MOOC 信息安全-復旦大學 中國大學慕課答案
- 七年級期中考試考后分析主題班會課件
- 農科大學生創(chuàng)業(yè)基礎智慧樹知到期末考試答案2024年
- 社區(qū)矯正知識課件
- (高清版)DZT 0261-2014 滑坡崩塌泥石流災害調查規(guī)范(1:50000)
- 全球及中國光纖偏振器行業(yè)市場發(fā)展分析及前景趨勢與投資發(fā)展研究報告2024-2029版
評論
0/150
提交評論