2024年中學(xué)數(shù)學(xué)《平方差公式》說(shuō)課稿_第1頁(yè)
2024年中學(xué)數(shù)學(xué)《平方差公式》說(shuō)課稿_第2頁(yè)
2024年中學(xué)數(shù)學(xué)《平方差公式》說(shuō)課稿_第3頁(yè)
2024年中學(xué)數(shù)學(xué)《平方差公式》說(shuō)課稿_第4頁(yè)
2024年中學(xué)數(shù)學(xué)《平方差公式》說(shuō)課稿_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第頁(yè)2024年中學(xué)數(shù)學(xué)《平方差公式》說(shuō)課稿中學(xué)數(shù)學(xué)《平方差公式》說(shuō)課稿1

一、說(shuō)教材

本節(jié)課選自人教版八年級(jí)上冊(cè)第15章第二節(jié)內(nèi)容,它是在學(xué)生已經(jīng)掌握了多項(xiàng)式乘法之后,自然過(guò)渡到具有特殊形式的多項(xiàng)式的乘法,是從一般到特殊的認(rèn)知規(guī)律的典型范例。對(duì)它的學(xué)習(xí)和研究,不僅給出了特殊的多項(xiàng)式乘法的簡(jiǎn)便算法,而且為以后的因式分解、分式的化簡(jiǎn)等內(nèi)容奠定了基礎(chǔ),同時(shí)也為學(xué)習(xí)完全平方公式的學(xué)習(xí)提供了方法。因此,平方差公式作為初中階段的第一個(gè)公式,在教學(xué)中具有很重要地位。

二、說(shuō)學(xué)情

學(xué)生已熟練掌握了冪的運(yùn)算和整式乘法,但在進(jìn)行多項(xiàng)式乘法運(yùn)算時(shí)常常會(huì)出現(xiàn)符號(hào)錯(cuò)誤及漏項(xiàng)等問(wèn)題;另外,數(shù)學(xué)公式中字母具有高度概括性、廣泛應(yīng)用性,鑒于八年級(jí)學(xué)生的認(rèn)知水平,理解上有困難。因此,我們把教學(xué)難點(diǎn)定為:理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。

三、說(shuō)教學(xué)目標(biāo)

基于對(duì)教材的理解和分析,我在教學(xué)中以學(xué)生為主體,以學(xué)生的學(xué)為根本,我把本課的目標(biāo)定位為:

知識(shí)與技能目標(biāo):了解平方差公式產(chǎn)生的背景,理解平方差公式的意義,掌握平方差公式的結(jié)構(gòu)特征,并能靈活運(yùn)用平方差公式解決問(wèn)題。

過(guò)程與方法目標(biāo):經(jīng)歷平方差公式產(chǎn)生的探究過(guò)程,培養(yǎng)觀察、猜想、歸納、概括、推理的能力和符號(hào)感,感受利用轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學(xué)思想方法解決實(shí)際問(wèn)題的策略。

情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)探究平方差公式,形成學(xué)習(xí)數(shù)學(xué)公式的一般套路,體會(huì)成功的喜悅,培養(yǎng)團(tuán)結(jié)協(xié)助的意識(shí),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣。

教學(xué)重點(diǎn):理解平方差公式的意義,掌握平方差公式的結(jié)構(gòu)特征。

教學(xué)難點(diǎn):運(yùn)用平方差公式解決問(wèn)題。

四、說(shuō)教法、學(xué)法

課堂是學(xué)生學(xué)習(xí)的主陣地,真正做到把課堂還給學(xué)生,因而我采取的的教學(xué)模式定為:三先兩主動(dòng),即讓學(xué)生先說(shuō)話、先動(dòng)手、先總結(jié),讓學(xué)生主動(dòng)提問(wèn)、主動(dòng)探索。學(xué)習(xí)方法:學(xué)生積極參與、大膽猜想、合作交流和自主探索。

五、說(shuō)教學(xué)過(guò)程

本節(jié)課教學(xué)按以下五個(gè)流程展開(kāi)

五個(gè)流程:

創(chuàng)設(shè)情景

引入新課

合作交流探求新知

鞏固深化內(nèi)化新知

總結(jié)概括

布置作業(yè):

(一)創(chuàng)設(shè)情景,引入新課

數(shù)學(xué)課標(biāo)強(qiáng)調(diào):“數(shù)學(xué)來(lái)源于實(shí)際生活”,為了體現(xiàn)這一思想,我設(shè)計(jì)了一個(gè)實(shí)際問(wèn)題。這里只提供情境,刺激學(xué)生主動(dòng)提出問(wèn)題,因?yàn)椤疤岢鰡?wèn)題”比“解決問(wèn)題”更重要。這個(gè)以生活實(shí)例創(chuàng)設(shè)的情境,不僅激發(fā)學(xué)生的求知興趣,又為平方差公式的引人服務(wù),更為說(shuō)明平方差公式的幾何意義做好鋪墊。

(二)合作交流,探求新知

首先,我用情境中一道題目,并再安排了兩個(gè)練習(xí),通過(guò)對(duì)特殊的多項(xiàng)式與多項(xiàng)式相乘的計(jì)算,既復(fù)習(xí)了舊知,又為下面學(xué)習(xí)的平方差公式作了鋪墊,讓學(xué)生感受從一般到特殊的認(rèn)識(shí)規(guī)律,引出乘法公式平方差公式。

接著,教師提問(wèn),學(xué)生通過(guò)自主探究、合作交流,發(fā)現(xiàn)規(guī)律,式子左邊是兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,右邊是這兩個(gè)數(shù)的平方差,并猜想出:這樣設(shè)計(jì)使學(xué)生在已掌握的多項(xiàng)乘法法則的基礎(chǔ)上,探索具有特殊形式的多項(xiàng)式乘法──平方差公式,自然、合理地探究出新知。

再次,引導(dǎo)學(xué)生從“數(shù)”的角度驗(yàn)證猜想,對(duì)于任意的`a、b,由學(xué)生運(yùn)用多項(xiàng)式乘法計(jì)算:驗(yàn)證了其公式的正確性。

順勢(shì)鼓勵(lì)學(xué)生用自己的語(yǔ)言歸納表述,總結(jié)出公式,從而提高學(xué)生的語(yǔ)言組織與表達(dá)能力。

然后,教師通過(guò)分析公式的本質(zhì)特征使學(xué)生掌握公式,在認(rèn)清公式的結(jié)構(gòu)特征的基礎(chǔ)上,進(jìn)一步剖析a、b的廣泛含義,抓住了概念的核心,使學(xué)生在公式的運(yùn)用中能得心應(yīng)手,起到事半功倍的效果。

最后,用學(xué)生最喜歡的拼圖游戲,引導(dǎo)學(xué)生從“形”的角度認(rèn)識(shí)平方差公式的幾何意義,再次驗(yàn)證了猜想,滲透了數(shù)形結(jié)合的思想,讓學(xué)生體會(huì)到代數(shù)與幾何的內(nèi)在聯(lián)系,引導(dǎo)學(xué)生學(xué)會(huì)從多角度、多方面來(lái)思考問(wèn)題。

(三)鞏固深化,內(nèi)化新知

總結(jié)出平方差公式后,我先設(shè)計(jì)兩個(gè)簡(jiǎn)單練習(xí)題。通過(guò)練習(xí),使學(xué)生加深對(duì)平方差公式結(jié)構(gòu)特點(diǎn)的認(rèn)識(shí)和理解,進(jìn)一步掌握平方差公式的本質(zhì)特征和運(yùn)用平方差公式必須具備的條件。

然后設(shè)計(jì)了三個(gè)例題。例1和例2是教材上的內(nèi)容,例3是我設(shè)計(jì)的一道實(shí)際問(wèn)題。

例1有兩道小題,其中設(shè)計(jì)第(1)題,然后學(xué)生完成。第(2)題學(xué)生板演,師生共同糾錯(cuò)。

例2有兩道小題,先讓學(xué)生嘗試練習(xí),出錯(cuò)后教師及時(shí)糾正,使學(xué)生認(rèn)識(shí)深刻。第一題體現(xiàn)了轉(zhuǎn)化的思想和數(shù)式通性;另一題是平方差公式與一般多項(xiàng)式乘法的綜合,強(qiáng)調(diào)不能用公式的仍按多項(xiàng)式乘法法則進(jìn)行。

例3運(yùn)用平方差公式解決實(shí)際問(wèn)題,體現(xiàn)了數(shù)學(xué)來(lái)源于生活,服務(wù)于生活,學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的價(jià)值,設(shè)計(jì)此題與平方差公式的幾何意義相吻合,加深學(xué)生對(duì)平方差公式的理解。

(四)反饋練習(xí),鞏固新知

練習(xí)題的設(shè)計(jì)有梯度,從基礎(chǔ)應(yīng)用公式入手,到拓展提高,加強(qiáng)基本知識(shí)和基本技能訓(xùn)練,使不同水平的學(xué)生學(xué)習(xí)都有收獲,體現(xiàn)出“人人學(xué)有用的數(shù)學(xué)”。

在練習(xí)的基礎(chǔ)上,教師歸納總結(jié),提升學(xué)習(xí)理念。

(五)總結(jié)概括,自我評(píng)價(jià)

從知識(shí)和數(shù)學(xué)思想兩個(gè)方面加以小結(jié),使學(xué)生對(duì)本節(jié)課的知識(shí)有一個(gè)系統(tǒng)全面的認(rèn)識(shí)。

最后,作業(yè)分層處理,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,讓不同的人在數(shù)學(xué)上得到不同的發(fā)展。

中學(xué)數(shù)學(xué)《平方差公式》說(shuō)課稿2

一、說(shuō)目標(biāo)

1、使孩子理解和掌握平方差公式,并會(huì)用公式進(jìn)行計(jì)算;

2、注意培養(yǎng)孩子分析、綜合和抽象、概括以及運(yùn)算能力。

二、說(shuō)重難點(diǎn)

本節(jié)教學(xué)的重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式、難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義、平方差公式是進(jìn)一步學(xué)習(xí)完全平方公式、進(jìn)行相關(guān)代數(shù)運(yùn)算與變形的重要知識(shí)基礎(chǔ)。

1、平方差公式是由多項(xiàng)式乘法直接計(jì)算得出的:

與一般式多項(xiàng)式的乘法一樣,積的項(xiàng)數(shù)是多項(xiàng)式項(xiàng)數(shù)的積,即四項(xiàng)、合并同類項(xiàng)后僅得兩項(xiàng)。

2、這一公式的結(jié)構(gòu)特征:左邊是兩個(gè)二項(xiàng)式相乘,這兩個(gè)二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù);右邊是乘式中兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方差、公式中的字母可以表示具體的數(shù)(正數(shù)和負(fù)數(shù)),也可以表示單項(xiàng)式或多項(xiàng)式等代數(shù)式。

只要符合公式的結(jié)構(gòu)特征,就可運(yùn)用這一公式、例如在運(yùn)用公式的過(guò)程中,有時(shí)需要變形,例如,變形為,兩個(gè)數(shù)就可以看清楚了。

3、關(guān)于平方差公式的特征,在學(xué)習(xí)時(shí)應(yīng)注意:

(1)左邊是兩個(gè)二項(xiàng)式相乘,并且這兩上二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù)。

(2)右邊是乘式中兩項(xiàng)的.平方差(相同項(xiàng)的平方減去相反項(xiàng)的平方)。

(3)公式中的和可以是具體數(shù),也可以是單項(xiàng)式或多項(xiàng)式。

(4)對(duì)于形如兩數(shù)和與這兩數(shù)差相乘,就可以運(yùn)用上述公式來(lái)計(jì)算。

三、說(shuō)教法

1、可以將“兩個(gè)二項(xiàng)式相乘,積可能有幾項(xiàng)”的問(wèn)題作為課題引入,目的是激發(fā)孩子的學(xué)習(xí)興趣,使孩子能在兩個(gè)二項(xiàng)式相乘其積可能為四項(xiàng)、三項(xiàng)、兩項(xiàng)中找出積為兩項(xiàng)的特征,上升到一定的理論認(rèn)識(shí),加以實(shí)踐檢驗(yàn),從而培養(yǎng)孩子觀察、概括的能力。

2、通過(guò)孩子自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出為什么有的兩個(gè)二項(xiàng)式相乘,其積為兩項(xiàng),因?yàn)槠渲袃身?xiàng)是兩個(gè)數(shù)的平方差,而另兩項(xiàng)恰是互為相反數(shù),合并同類項(xiàng)時(shí)為零,即

(a+b)(a-b)=a2+ab-ab-b2=a2-b2、

這樣得出平方差公式,并且把這類乘法的實(shí)質(zhì)講清楚了。

3、通過(guò)例題、練習(xí)與小結(jié),教會(huì)孩子如何正確應(yīng)用平方差公式、這里特別要求孩子注意公式的結(jié)構(gòu),教師可以用對(duì)應(yīng)思想來(lái)加強(qiáng)對(duì)公式結(jié)構(gòu)的理解和訓(xùn)練,如計(jì)算(1+2x)(1-2x),(1+2x)(1-2x)=12-(2x)2=1-4x2

↓↓↓↓↑↑

(a+b)(a-b)=a2-b2、

這樣,孩子就能正確應(yīng)用公式進(jìn)行計(jì)算,不容易出差錯(cuò)。

另外,在計(jì)算中不一定用一種模式刻板地應(yīng)用公式,可以結(jié)合以前學(xué)過(guò)的運(yùn)算法則,經(jīng)過(guò)變形后靈活應(yīng)用公式,培養(yǎng)孩子解題的靈活性。

四、說(shuō)學(xué)法

一、師生共同研究平方差公式

我們已經(jīng)學(xué)過(guò)了多項(xiàng)式的乘法,兩個(gè)二項(xiàng)式相乘,在合并同類項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類項(xiàng)以后,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子。

讓孩子動(dòng)腦、動(dòng)筆進(jìn)行探討,并發(fā)表自己的見(jiàn)解、教師根據(jù)孩子的回答,引導(dǎo)孩子進(jìn)一步思考:

兩個(gè)二項(xiàng)式相乘,乘式具備什么特征時(shí),積才會(huì)是二項(xiàng)式?為什么具備這些特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積會(huì)是兩項(xiàng)呢?而它們的積又有什么特征?

(當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),積是二項(xiàng)式、這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了、而它們的積等于乘式中這兩個(gè)數(shù)的平方差)

繼而指出,在多項(xiàng)式的乘法中,對(duì)于某些特殊形式的多項(xiàng)式相乘,我們把它寫(xiě)成公式,并加以熟記,以便遇到類似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算、以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。

在此基礎(chǔ)上,讓孩子用語(yǔ)言敘述公式。

二、運(yùn)用舉例變式練習(xí)

例1計(jì)算(1+2x)(1-2x)、

解:(1+2x)(1-2x)

=12-(2x)2

=1-4x2、

教師引導(dǎo)孩子分析題目條件是否符合平方差公式特征,并讓孩子說(shuō)出本題中a,b分別表示什么。

例2計(jì)算(b2+2a3)(2a3-b2)、

解:(b2+2a3)(2a3-b2)

=(2a3+b2)(2a3-b2)

=(2a3)2-(b2)2

=4a6-b4、

教師引導(dǎo)孩子發(fā)現(xiàn),只需將(b2+2a3)中的兩項(xiàng)交換位置,就可用平方差公式進(jìn)行計(jì)算。

課堂練習(xí)

運(yùn)用平方差公式計(jì)算:

(l)(x+a)(x-a);(2)(m+n)(m-n);

(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)、

例3計(jì)算(-4a-1)(-4a+1)、

讓孩子在練習(xí)本上計(jì)算,教師巡視孩子解題情況,讓采用不同解法的兩個(gè)孩子進(jìn)行板演。

解法1:(-4a-1)(-4a+1)

=[-(4a+l)][-(4a-l)]

=(4a+1)(4a-l)

=(4a)2-l2

=16a2-1、

解法2:(-4a-l)(-4a+l)

=(-4a)2-l

=16a2-1、

根據(jù)孩子板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號(hào)的辦法,使兩乘式首項(xiàng)都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫(xiě)出結(jié)果、解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),直接寫(xiě)出(-4a)2-l2后得出結(jié)果、采用解法2的同學(xué)比較注意平方差公式的特征,能看到問(wèn)題的本質(zhì),運(yùn)算簡(jiǎn)捷、因此,我們?cè)谟?jì)算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡(jiǎn)捷地得到答案。

課堂練習(xí)

1、口答下列各題:

(l)(-a+b)(a+b);(2)(a-b)(b+a);

(3)(-a-b)(-a+b);(4)(a-b)(-a-b)、

2、計(jì)算下列各題:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

教師巡視孩子練習(xí)情況,請(qǐng)不同解法的孩子,或發(fā)生錯(cuò)誤的孩子板演,教師和孩子一起分析解法。

三、小結(jié)

1、什么是平方差公式?

2、運(yùn)用公式要注意什么?

(1)要符合公式特征才能運(yùn)用平方差公式;

(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意變形。

四、作業(yè)

1、運(yùn)用平方差公式計(jì)算:

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);

2、計(jì)算:

(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);

(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4)。

中學(xué)數(shù)學(xué)《平方差公式》說(shuō)課稿3

學(xué)習(xí)目標(biāo):

1、經(jīng)歷探索完全平方公式的過(guò)程,發(fā)展學(xué)生觀察、交流、歸納、猜測(cè)、驗(yàn)證等能力。

2、會(huì)推導(dǎo)完全平方公式,了解公式的幾何背景,會(huì)用公式計(jì)算。

3、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。

學(xué)習(xí)重點(diǎn):

會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

學(xué)習(xí)難點(diǎn):

掌握完全平方公式的結(jié)構(gòu)特征,理解公式中a.b的廣泛含義。

學(xué)習(xí)過(guò)程:

一、學(xué)習(xí)準(zhǔn)備

1、利用多項(xiàng)式乘以多項(xiàng)式計(jì)算:(a+b)2(a-b)2

2、這兩個(gè)特殊形式的多項(xiàng)式乘法結(jié)果稱為完全平方公式。

嘗試用自己的.語(yǔ)言敘述完全平方公式:

3、完全平方公式的幾何意義:閱讀課本64頁(yè),完成填空。

4、完全平方公式的結(jié)構(gòu)特征:

(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

左邊是形式,右邊有三項(xiàng),其中兩項(xiàng)是形式,另一項(xiàng)是

注意:公式中字母的含義廣泛,可以是,只要題目符合公式的結(jié)構(gòu)特征,就可以運(yùn)用這一公式,可用符號(hào)表示為:(□±△)=□2±2□△+△2

5、兩個(gè)完全平方公式的轉(zhuǎn)化:

(a-b)2=2=()2+2()+()2=

二、合作探究

1、利用乘法公式計(jì)算:

(1)(3a+2b)2(2)(-4x2-1)2

分析:要分清題目中哪個(gè)式子相當(dāng)于公式中的a,哪個(gè)式子相當(dāng)于公式中

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論