2022屆江蘇省海門市東洲國際達(dá)標(biāo)名校畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
2022屆江蘇省海門市東洲國際達(dá)標(biāo)名校畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
2022屆江蘇省海門市東洲國際達(dá)標(biāo)名校畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
2022屆江蘇省海門市東洲國際達(dá)標(biāo)名校畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
2022屆江蘇省海門市東洲國際達(dá)標(biāo)名校畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022屆江蘇省海門市東洲國際達(dá)標(biāo)名校畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時(shí)間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達(dá)終點(diǎn)10分鐘D.烏龜追上兔子用了20分鐘2.如圖,在正方形網(wǎng)格中建立平面直角坐標(biāo)系,若A0,2,BA.1,-2 B.1,-1 C.2,-1 D.2,13.要使式子有意義,的取值范圍是()A. B.且 C..或 D.且4.如圖,是由7個(gè)大小相同的小正方體堆砌而成的幾何體,若從標(biāo)有①、②、③、④的四個(gè)小正方體中取走一個(gè)后,余下幾何體與原幾何體的主視圖相同,則取走的正方體是()A.① B.② C.③ D.④5.下面的統(tǒng)計(jì)圖反映了我市2011﹣2016年氣溫變化情況,下列說法不合理的是()A.2011﹣2014年最高溫度呈上升趨勢B.2014年出現(xiàn)了這6年的最高溫度C.2011﹣2015年的溫差成下降趨勢D.2016年的溫差最大6.從甲、乙、丙、丁四人中選一人參加詩詞大會(huì)比賽,經(jīng)過三輪初賽,他們的平均成績都是86.5分,方差分別是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你認(rèn)為派誰去參賽更合適()A.甲 B.乙 C.丙 D.丁7.在數(shù)軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.8.如圖,在中,.點(diǎn)是的中點(diǎn),連結(jié),過點(diǎn)作,分別交于點(diǎn),與過點(diǎn)且垂直于的直線相交于點(diǎn),連結(jié).給出以下四個(gè)結(jié)論:①;②點(diǎn)是的中點(diǎn);③;④,其中正確的個(gè)數(shù)是()A.4 B.3 C.2 D.19.若(x﹣1)0=1成立,則x的取值范圍是()A.x=﹣1 B.x=1 C.x≠0 D.x≠110.在以下四個(gè)圖案中,是軸對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.李明早上騎自行車上學(xué),中途因道路施工推車步行了一段路,到學(xué)校共用時(shí)15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學(xué)校的路程是2900米,設(shè)他推車步行的時(shí)間為x分鐘,那么可列出的方程是_____________.12.如圖,矩形中,,,將矩形沿折疊,點(diǎn)落在點(diǎn)處.則重疊部分的面積為______.13.圖中是兩個(gè)全等的正五邊形,則∠α=______.14.當(dāng)x=_________時(shí),分式的值為零.15.二次函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo)是________.16.拋物線y=(x﹣3)2+1的頂點(diǎn)坐標(biāo)是____.17.如圖,在正方形ABCD中,E是AB上一點(diǎn),BE=2,AE=3BE,P是AC上一動(dòng)點(diǎn),則PB+PE的最小值是.三、解答題(共7小題,滿分69分)18.(10分)已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).(1)畫出△ABC向下平移4個(gè)單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是;(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是;(3)△A2B2C2的面積是平方單位.19.(5分)如圖,矩形ABCD中,點(diǎn)P是線段AD上一動(dòng)點(diǎn),O為BD的中點(diǎn),PO的延長線交BC于Q.(1)求證:OP=OQ;(2)若AD=8厘米,AB=6厘米,P從點(diǎn)A出發(fā),以1厘米/秒的速度向D運(yùn)動(dòng)(不與D重合).設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,請用t表示PD的長;并求t為何值時(shí),四邊形PBQD是菱形.20.(8分)如圖,在?ABCD中,AE⊥BC交邊BC于點(diǎn)E,點(diǎn)F為邊CD上一點(diǎn),且DF=BE.過點(diǎn)F作FG⊥CD,交邊AD于點(diǎn)G.求證:DG=DC.21.(10分)如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動(dòng)點(diǎn),直線AP、BP分別交l于M、N兩點(diǎn).(1)當(dāng)∠A=30°時(shí),MN的長是;(2)求證:MC?CN是定值;(3)MN是否存在最大或最小值,若存在,請寫出相應(yīng)的最值,若不存在,請說明理由;(4)以MN為直徑的一系列圓是否經(jīng)過一個(gè)定點(diǎn),若是,請確定該定點(diǎn)的位置,若不是,請說明理由.22.(10分)在平面直角坐標(biāo)系中,關(guān)于的一次函數(shù)的圖象經(jīng)過點(diǎn),且平行于直線.(1)求該一次函數(shù)表達(dá)式;(2)若點(diǎn)Q(x,y)是該一次函數(shù)圖象上的點(diǎn),且點(diǎn)Q在直線的下方,求x的取值范圍.23.(12分)如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且B(4,0).(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);(2)如果點(diǎn)P(p,0)是x軸上的一個(gè)動(dòng)點(diǎn),則當(dāng)|PC﹣PD|取得最大值時(shí),求p的值;(3)能否在拋物線第一象限的圖象上找到一點(diǎn)Q,使△QBC的面積最大,若能,請求出點(diǎn)Q的坐標(biāo);若不能,請說明理由.24.(14分)先化簡,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】分析:根據(jù)圖象得出相關(guān)信息,并對各選項(xiàng)一一進(jìn)行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項(xiàng)錯(cuò)誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項(xiàng)錯(cuò)誤;兔子是用60分鐘到達(dá)終點(diǎn),烏龜是用50分鐘到達(dá)終點(diǎn),兔子比烏龜晚到達(dá)終點(diǎn)10分鐘,故C選項(xiàng)錯(cuò)誤;在比賽20分鐘時(shí),烏龜和兔子都距起點(diǎn)200米,即烏龜追上兔子用了20分鐘,故D選項(xiàng)正確.故選D.點(diǎn)睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進(jìn)行判斷是解題的關(guān)鍵.2、C【解析】

根據(jù)A點(diǎn)坐標(biāo)即可建立平面直角坐標(biāo).【詳解】解:由A(0,2),B(1,1)可知原點(diǎn)的位置,

建立平面直角坐標(biāo)系,如圖,

∴C(2,-1)

故選:C.【點(diǎn)睛】本題考查平面直角坐標(biāo)系,解題的關(guān)鍵是建立直角坐標(biāo)系,本題屬于基礎(chǔ)題型.3、D【解析】

根據(jù)二次根式和分式有意義的條件計(jì)算即可.【詳解】解:∵有意義,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本題答案為:D.【點(diǎn)睛】二次根式和分式有意義的條件是本題的考點(diǎn),二次根式有意義的條件是被開方數(shù)大于等于0,分式有意義的條件是分母不為0.4、A【解析】

根據(jù)題意得到原幾何體的主視圖,結(jié)合主視圖選擇.【詳解】解:原幾何體的主視圖是:.視圖中每一個(gè)閉合的線框都表示物體上的一個(gè)平面,左側(cè)的圖形只需要兩個(gè)正方體疊加即可.故取走的正方體是①.故選A.【點(diǎn)睛】本題考查了簡單組合體的三視圖,中等難度,作出幾何體的主視圖是解題關(guān)鍵.5、C【解析】

利用折線統(tǒng)計(jì)圖結(jié)合相應(yīng)數(shù)據(jù),分別分析得出符合題意的答案.【詳解】A選項(xiàng):年最高溫度呈上升趨勢,正確;

B選項(xiàng):2014年出現(xiàn)了這6年的最高溫度,正確;

C選項(xiàng):年的溫差成下降趨勢,錯(cuò)誤;

D選項(xiàng):2016年的溫差最大,正確;

故選C.【點(diǎn)睛】考查了折線統(tǒng)計(jì)圖,利用折線統(tǒng)計(jì)圖獲取正確信息是解題關(guān)鍵.6、A【解析】

根據(jù)方差的概念進(jìn)行解答即可.【詳解】由題意可知甲的方差最小,則應(yīng)該選擇甲.故答案為A.【點(diǎn)睛】本題考查了方差,解題的關(guān)鍵是掌握方差的定義進(jìn)行解題.7、A【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1可得不等式解集,然后得出在數(shù)軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項(xiàng)得:2x>﹣2,系數(shù)化為1得:x>﹣1,故選A.“點(diǎn)睛”本題主要考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù)不等號方向要改變.8、C【解析】

用特殊值法,設(shè)出等腰直角三角形直角邊的長,證明△CDB∽△BDE,求出相關(guān)線段的長;易證△GAB≌△DBC,求出相關(guān)線段的長;再證AG∥BC,求出相關(guān)線段的長,最后求出△ABC和△BDF的面積,即可作出選擇.【詳解】解:由題意知,△ABC是等腰直角三角形,設(shè)AB=BC=2,則AC=2,∵點(diǎn)D是AB的中點(diǎn),∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,F(xiàn)E=BG﹣GF﹣BE=,故②錯(cuò)誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)以及等腰直角三角形的相關(guān)性質(zhì),中等難度,注意合理的運(yùn)用特殊值法是解題關(guān)鍵.9、D【解析】試題解析:由題意可知:x-1≠0,

x≠1

故選D.10、A【解析】

根據(jù)軸對稱圖形的概念對各選項(xiàng)分析判斷利用排除法求解.【詳解】A、是軸對稱圖形,故本選項(xiàng)正確;

B、不是軸對稱圖形,故本選項(xiàng)錯(cuò)誤;

C、不是軸對稱圖形,故本選項(xiàng)錯(cuò)誤;

D、不是軸對稱圖形,故本選項(xiàng)錯(cuò)誤.

故選:A.【點(diǎn)睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:根據(jù)題意把李明步行和騎車各自所走路程表達(dá)出來,再結(jié)合步行和騎車所走總里程為2900米,列出方程即可.詳解:設(shè)他推車步行的時(shí)間為x分鐘,根據(jù)題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點(diǎn)睛:弄清本題中的等量關(guān)系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關(guān)鍵.12、10【解析】

根據(jù)翻折的特點(diǎn)得到,.設(shè),則.在中,,即,解出x,再根據(jù)三角形的面積進(jìn)行求解.【詳解】∵翻折,∴,,又∵,∴,∴.設(shè),則.在中,,即,解得,∴,∴.【點(diǎn)睛】此題主要考查勾股定理,解題的關(guān)鍵是熟知翻折的性質(zhì)及勾股定理的應(yīng)用.13、108°【解析】

先求出正五邊形各個(gè)內(nèi)角的度數(shù),再求出∠BCD和∠BDC的度數(shù),求出∠CBD,即可求出答案.【詳解】如圖:∵圖中是兩個(gè)全等的正五邊形,∴BC=BD,∴∠BCD=∠BDC,∵圖中是兩個(gè)全等的正五邊形,∴正五邊形每個(gè)內(nèi)角的度數(shù)是=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案為108°.【點(diǎn)睛】本題考查了正多邊形和多邊形的內(nèi)角和外角,能求出各個(gè)角的度數(shù)是解此題的關(guān)鍵.14、2【解析】

根據(jù)若分式的值為零,需同時(shí)具備兩個(gè)條件:(1)分子為1;(2)分母不為1計(jì)算即可.【詳解】解:依題意得:2﹣x=1且2x+2≠1.解得x=2,故答案為2.【點(diǎn)睛】本題考查的是分式為1的條件和一元二次方程的解法,掌握若分式的值為零,需同時(shí)具備兩個(gè)條件:(1)分子為1;(2)分母不為1是解題的關(guān)鍵.15、【解析】

求出自變量x為1時(shí)的函數(shù)值即可得到二次函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo).【詳解】把代入得:,∴該二次函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo)為,故答案為.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,在y軸上的點(diǎn)的橫坐標(biāo)為1.16、(3,1)【解析】分析:已知拋物線解析式為頂點(diǎn)式,可直接寫出頂點(diǎn)坐標(biāo).詳解:∵y=(x﹣3)2+1為拋物線的頂點(diǎn)式,根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn)可知,拋物線的頂點(diǎn)坐標(biāo)為(3,1).故答案為(3,1).點(diǎn)睛:主要考查了拋物線頂點(diǎn)式的運(yùn)用.17、10【解析】

由正方形性質(zhì)的得出B、D關(guān)于AC對稱,根據(jù)兩點(diǎn)之間線段最短可知,連接DE,交AC于P,連接BP,則此時(shí)PB+PE的值最小,進(jìn)而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時(shí)PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關(guān)于AC對稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.三、解答題(共7小題,滿分69分)18、(1)(2,﹣2);(2)(1,0);(3)1.【解析】試題分析:(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點(diǎn)的坐標(biāo);(2)根據(jù)位似圖形的性質(zhì)得出對應(yīng)點(diǎn)位置,從而得到點(diǎn)的坐標(biāo);(3)利用等腰直角三角形的性質(zhì)得出△A2B2C2的面積.試題解析:(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面積是:××=1平方單位.故答案為1.考點(diǎn):1、平移變換;2、位似變換;3、勾股定理的逆定理19、(1)證明見解析(2)74【解析】試題分析:(1)先根據(jù)四邊形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根據(jù)O為BD的中點(diǎn)得出△POD≌△QOB,即可證得OP=OQ;(2)根據(jù)已知條件得出∠A的度數(shù),再根據(jù)AD=8cm,AB=6cm,得出BD和OD的長,再根據(jù)四邊形PBQD是菱形時(shí),利用勾股定理即可求出t的值,判斷出四邊形PBQD是菱形.試題解析:(1)證明:因?yàn)樗倪呅蜛BCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因?yàn)镺為BD的中點(diǎn),所以O(shè)B=OD,在△POD與△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以O(shè)P=OQ.(2)解:PD=8-t,因?yàn)樗倪呅蜳BQD是菱形,所以PD=BP=8-t,因?yàn)樗倪呅蜛BCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:AB即62解得:t=74即運(yùn)動(dòng)時(shí)間為74考點(diǎn):矩形的性質(zhì);菱形的性質(zhì);全等三角形的判斷和性質(zhì)勾股定理.20、證明見解析.【解析】試題分析:先由平行四邊形的性質(zhì)得到∠B=∠D,AB=CD,再利用垂直的定義得到∠AEB=∠GFD=90°,根據(jù)“ASA”判定△AEB≌△GFD,從而得到AB=DC,所以有DG=DC.試題解析:∵四邊形ABCD為平行四邊形,∴∠B=∠D,AB=CD,∵AE⊥BC,F(xiàn)G⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.考點(diǎn):1.全等三角形的判定與性質(zhì);2.平行四邊形的性質(zhì).21、(1);(2)MC?NC=5;(3)a+b的最小值為2;(4)以MN為直徑的一系列圓經(jīng)過定點(diǎn)D,此定點(diǎn)D在直線AB上且CD的長為.【解析】

(1)由題意得AO=OB=2、OC=3、AC=5、BC=1,根據(jù)MC=ACtan∠A=、CN=可得答案;(2)證△ACM∽△NCB得,由此即可求得答案;(3)設(shè)MC=a、NC=b,由(2)知ab=5,由P是圓上異于A、B的動(dòng)點(diǎn)知a>0,可得b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)得a+b不存在最大值,當(dāng)a=b時(shí),a+b最小,據(jù)此求解可得;(4)設(shè)該圓與AC的交點(diǎn)為D,連接DM、DN,證△MDC∽△DNC得,即MC?NC=DC2=5,即DC=,據(jù)此知以MN為直徑的一系列圓經(jīng)過定點(diǎn)D,此頂點(diǎn)D在直線AB上且CD的長為.【詳解】(1)如圖所示,根據(jù)題意知,AO=OB=2、OC=3,則AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直線l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×=,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=,則MN=MC+CN=+=,故答案為:;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC?NC=AC?BC=5×1=5;(3)設(shè)MC=a、NC=b,由(2)知ab=5,∵P是圓上異于A、B的動(dòng)點(diǎn),∴a>0,∴b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)知,a+b不存在最大值,當(dāng)a=b時(shí),a+b最小,由a=b得a=,解之得a=(負(fù)值舍去),此時(shí)b=,此時(shí)a+b的最小值為2;(4)如圖,設(shè)該圓與AC的交點(diǎn)為D,連接DM、DN,∵M(jìn)N為直徑,∴∠MDN=90°,則∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,則△MDC∽△DNC,∴,即MC?NC=DC2,由(2)知MC?NC=5,∴DC2=5,∴DC=,∴以MN為直徑的一系列圓經(jīng)過定點(diǎn)D,此定點(diǎn)D在直線AB上且CD的長為.【點(diǎn)睛】本題考查的是圓的綜合問題,解題的關(guān)鍵是掌握相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用、反比例函數(shù)的性質(zhì)等知識點(diǎn).22、(1);(2).【解析】

(1)由題意可設(shè)該一次函數(shù)的解析式為:,將點(diǎn)M(4,7)代入所設(shè)解析式求出b的值即可得到一次函數(shù)的解析式;(2)根據(jù)直線上的點(diǎn)Q(x,y)在直線的下方可得2x-1<3x+2,解不等式即得結(jié)果.【詳解】解:(1)∵一次函數(shù)平行于直線,∴可設(shè)該一次函數(shù)的解析式為:,∵直線過點(diǎn)M(4,7),∴8+b=7,解得b=-1,∴一次函數(shù)的解析式為:y=2x-1;(2)∵點(diǎn)Q(x,y)是該一次函數(shù)圖象上的點(diǎn),∴y=2x-1,又∵點(diǎn)Q在直線的下方,如圖,∴2x-1<3x+2,解得x>-3.【點(diǎn)睛】本題考查了待定系數(shù)法求一次函數(shù)的解析式以及一次函數(shù)與不等式的關(guān)系,屬于常考題型,熟練掌握待定系數(shù)法與一次函數(shù)與不等式的關(guān)系是解題的關(guān)鍵.23、(1)y=﹣(x﹣1)2+9,D(1,9);(2)p=﹣1;(3)存在點(diǎn)Q(2,1)使△QBC的面積最大.【解析】分析:(1)把點(diǎn)B的坐標(biāo)代入y=ax2+2x+1求得a的值,即可得到該拋物線的解析式,再把所得解析式配方化為頂點(diǎn)式,即可得到拋物線頂點(diǎn)D的坐標(biāo);(2)由題意可知點(diǎn)P在直線C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論