版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年吉林省白城市通榆縣重點(diǎn)名校中考數(shù)學(xué)模擬預(yù)測(cè)題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列是我國(guó)四座城市的地鐵標(biāo)志圖,其中是中心對(duì)稱圖形的是()A. B. C. D.2.如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤3.如圖,拋物線y=-x2+mx的對(duì)稱軸為直線x=2,若關(guān)于x的-元二次方程-x2+mx-t=0(t為實(shí)數(shù))在l<x<3的范圍內(nèi)有解,則t的取值范圍是(
)A.-5<t≤4
B.3<t≤4
C.-5<t<3
D.t>-54.為豐富學(xué)生課外活動(dòng),某校積極開展社團(tuán)活動(dòng),開設(shè)的體育社團(tuán)有:A:籃球,B:排球,C:足球,D:羽毛球,E:乒乓球.學(xué)生可根據(jù)自己的愛好選擇一項(xiàng),李老師對(duì)八年級(jí)同學(xué)選擇體育社團(tuán)情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖),則以下結(jié)論不正確的是()A.選科目E的有5人B.選科目A的扇形圓心角是120°C.選科目D的人數(shù)占體育社團(tuán)人數(shù)的D.據(jù)此估計(jì)全校1000名八年級(jí)同學(xué),選擇科目B的有140人5.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),過點(diǎn)D作⊙O的切線交BC于點(diǎn)M,切點(diǎn)為N,則DM的長(zhǎng)為()A. B. C. D.6.一、單選題二次函數(shù)的圖象如圖所示,對(duì)稱軸為x=1,給出下列結(jié)論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結(jié)論有:A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)7.下列圖形都是由同樣大小的菱形按照一定規(guī)律所組成的,其中第①個(gè)圖形中一共有3個(gè)菱形,第②個(gè)圖形中一共有7個(gè)菱形,第③個(gè)圖形中一共有13個(gè)菱形,…,按此規(guī)律排列下去,第⑨個(gè)圖形中菱形的個(gè)數(shù)為()A.73 B.81 C.91 D.1098.如圖,A、B、C是小正方形的頂點(diǎn),且每個(gè)小正方形的邊長(zhǎng)為1,則tan∠BAC的值為()A. B.1 C. D.9.小明為今年將要參加中考的好友小李制作了一個(gè)(如圖)正方體禮品盒,六面上各有一字,連起來就是“預(yù)祝中考成功”,其中“預(yù)”的對(duì)面是“中”,“成”的對(duì)面是“功”,則它的平面展開圖可能是()A. B. C. D.10.一元二次方程(x+2017)2=1的解為()A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣201711.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)后得到三角形A′B′C,若點(diǎn)B′恰好落在線段AB上,AC、A′B′交于點(diǎn)O,則∠COA′的度數(shù)是()A.50° B.60° C.70° D.80°12.體育測(cè)試中,小進(jìn)和小俊進(jìn)行800米跑測(cè)試,小進(jìn)的速度是小俊的1.25倍,小進(jìn)比小俊少用了40秒,設(shè)小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.ABCD為矩形的四個(gè)頂點(diǎn),AB=16cm,AD=6cm,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)B為止,點(diǎn)Q以2cm/s的速度向D移動(dòng),P、Q兩點(diǎn)從出發(fā)開始到__________秒時(shí),點(diǎn)P和點(diǎn)Q的距離是10cm.14.已知一個(gè)斜坡的坡度,那么該斜坡的坡角的度數(shù)是______.15.如圖,△ABC中,CD⊥AB于D,E是AC的中點(diǎn).若AD=6,DE=5,則CD的長(zhǎng)等于.16.若一個(gè)反比例函數(shù)的圖象經(jīng)過點(diǎn)A(m,m)和B(2m,-1),則這個(gè)反比例函數(shù)的表達(dá)式為______17.函數(shù)的自變量x的取值范圍是_____.18.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書中有下列問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“今有直角三角形,勾(短直角邊)長(zhǎng)為5步,股(長(zhǎng)直角邊)長(zhǎng)為12步,問該直角三角形能容納的正方形邊長(zhǎng)最大是多少步?”該問題的答案是______步.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D,與CA的延長(zhǎng)線相交于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F.(1)試說明DF是⊙O的切線;(2)若AC=3AE,求tanC.20.(6分)已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為2cm/s;同時(shí)點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向點(diǎn)C勻速運(yùn)動(dòng),速度為lcm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0<t<5),解答下列問題:(1)當(dāng)為t何值時(shí),PQ∥BC;(2)設(shè)△AQP的面積為y(cm2),求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.21.(6分)已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側(cè)的兩點(diǎn),AC=DC,過點(diǎn)C與⊙O相切的直線CF交弦DB的延長(zhǎng)線于點(diǎn)E.(1)試判斷直線DE與CF的位置關(guān)系,并說明理由;(2)若∠A=30°,AB=4,求的長(zhǎng).22.(8分)已知AC,EC分別是四邊形ABCD和EFCG的對(duì)角線,直線AE與直線BF交于點(diǎn)H(1)觀察猜想如圖1,當(dāng)四邊形ABCD和EFCG均為正方形時(shí),線段AE和BF的數(shù)量關(guān)系是;∠AHB=.(2)探究證明如圖2,當(dāng)四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時(shí),(1)中的結(jié)論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點(diǎn)C旋轉(zhuǎn),在整個(gè)旋轉(zhuǎn)過程中,當(dāng)A、E、F三點(diǎn)共線時(shí),請(qǐng)直接寫出點(diǎn)B到直線AE的距離.23.(8分)已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個(gè)交點(diǎn);②對(duì)于任意實(shí)數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數(shù)y=ax2+bx的解析式;(2)若當(dāng)-2≤x≤r(r≠0)時(shí),恰有t≤y≤1.5r成立,求t和r的值.24.(10分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.(1)直接寫出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):;(2)四邊形BFDE的面積記為S,當(dāng)t為何值時(shí),S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.25.(10分)如圖,在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn)和,雙曲線經(jīng)過點(diǎn)B.(1)求直線和雙曲線的函數(shù)表達(dá)式;(2)點(diǎn)C從點(diǎn)A出發(fā),沿過點(diǎn)A與y軸平行的直線向下運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,點(diǎn)C的運(yùn)動(dòng)時(shí)間為t(0<t<12),連接BC,作BD⊥BC交x軸于點(diǎn)D,連接CD,①當(dāng)點(diǎn)C在雙曲線上時(shí),求t的值;②在0<t<6范圍內(nèi),∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值;③當(dāng)時(shí),請(qǐng)直接寫出t的值.26.(12分)計(jì)算:解不等式組,并寫出它的所有整數(shù)解.27.(12分)為了解某中學(xué)學(xué)生課余生活情況,對(duì)喜愛看課外書、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì).現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.由圖中提供的信息,解答下列問題:求n的值;若該校學(xué)生共有1200人,試估計(jì)該校喜愛看電視的學(xué)生人數(shù);若調(diào)查到喜愛體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
根據(jù)中心對(duì)稱圖形的定義解答即可.【詳解】選項(xiàng)A不是中心對(duì)稱圖形;選項(xiàng)B不是中心對(duì)稱圖形;選項(xiàng)C不是中心對(duì)稱圖形;選項(xiàng)D是中心對(duì)稱圖形.故選D.【點(diǎn)睛】本題考查了中心對(duì)稱圖形的定義,熟練運(yùn)用中心對(duì)稱圖形的定義是解決問題的關(guān)鍵.2、A【解析】
由拋物線的開口方向判斷a與2的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與2的關(guān)系,然后根據(jù)對(duì)稱軸判定b與2的關(guān)系以及2a+b=2;當(dāng)x=﹣1時(shí),y=a﹣b+c;然后由圖象確定當(dāng)x取何值時(shí),y>2.【詳解】①∵對(duì)稱軸在y軸右側(cè),∴a、b異號(hào),∴ab<2,故正確;②∵對(duì)稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當(dāng)x=﹣1時(shí),y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯(cuò)誤;④根據(jù)圖示知,當(dāng)m=1時(shí),有最大值;當(dāng)m≠1時(shí),有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實(shí)數(shù)).故正確.⑤如圖,當(dāng)﹣1<x<3時(shí),y不只是大于2.故錯(cuò)誤.故選A.【點(diǎn)睛】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,關(guān)鍵是熟練掌握①二次項(xiàng)系數(shù)a決定拋物線的開口方向,當(dāng)a>2時(shí),拋物線向上開口;當(dāng)a<2時(shí),拋物線向下開口;②一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置:當(dāng)a與b同號(hào)時(shí)(即ab>2),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<2),對(duì)稱軸在y軸右.(簡(jiǎn)稱:左同右異)③常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn),拋物線與y軸交于(2,c).3、B【解析】
先利用拋物線的對(duì)稱軸方程求出m得到拋物線解析式為y=-x2+4x,配方得到拋物線的頂點(diǎn)坐標(biāo)為(2,4),再計(jì)算出當(dāng)x=1或3時(shí),y=3,結(jié)合函數(shù)圖象,利用拋物線y=-x2+4x與直線y=t在1<x<3的范圍內(nèi)有公共點(diǎn)可確定t的范圍.【詳解】∵拋物線y=-x2+mx的對(duì)稱軸為直線x=2,∴,解之:m=4,∴y=-x2+4x,當(dāng)x=2時(shí),y=-4+8=4,∴頂點(diǎn)坐標(biāo)為(2,4),∵關(guān)于x的-元二次方程-x2+mx-t=0(t為實(shí)數(shù))在l<x<3的范圍內(nèi)有解,當(dāng)x=1時(shí),y=-1+4=3,當(dāng)x=2時(shí),y=-4+8=4,∴3<t≤4,故選:B【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).4、B【解析】
A選項(xiàng)先求出調(diào)查的學(xué)生人數(shù),再求選科目E的人數(shù)來判定,B選項(xiàng)先求出A科目人數(shù),再利用×360°判定即可,C選項(xiàng)中由D的人數(shù)及總?cè)藬?shù)即可判定,D選項(xiàng)利用總?cè)藬?shù)乘以樣本中B人數(shù)所占比例即可判定.【詳解】解:調(diào)查的學(xué)生人數(shù)為:12÷24%=50(人),選科目E的人數(shù)為:50×10%=5(人),故A選項(xiàng)正確,選科目A的人數(shù)為50﹣(7+12+10+5)=16人,選科目A的扇形圓心角是×360°=115.2°,故B選項(xiàng)錯(cuò)誤,選科目D的人數(shù)為10,總?cè)藬?shù)為50人,所以選科目D的人數(shù)占體育社團(tuán)人數(shù)的,故C選項(xiàng)正確,估計(jì)全校1000名八年級(jí)同學(xué),選擇科目B的有1000×=140人,故D選項(xiàng)正確;故選B.【點(diǎn)睛】本題主要考查了條形統(tǒng)計(jì)圖及扇形統(tǒng)計(jì)圖,解題的關(guān)鍵是讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖中找到準(zhǔn)確信息.5、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點(diǎn):1.切線的性質(zhì);3.矩形的性質(zhì).6、B【解析】試題解析:①∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對(duì)稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個(gè)交點(diǎn),故正確;③∵二次函數(shù)圖象的對(duì)稱軸是直線x=1,∴拋物線上x=0時(shí)的點(diǎn)與當(dāng)x=2時(shí)的點(diǎn)對(duì)稱,即當(dāng)x=2時(shí),y>0∴4a+2b+c>0,故錯(cuò)誤;④∵二次函數(shù)圖象的對(duì)稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結(jié)論有3個(gè).故選B.7、C【解析】試題解析:第①個(gè)圖形中一共有3個(gè)菱形,3=12+2;第②個(gè)圖形中共有7個(gè)菱形,7=22+3;第③個(gè)圖形中共有13個(gè)菱形,13=32+4;…,第n個(gè)圖形中菱形的個(gè)數(shù)為:n2+n+1;第⑨個(gè)圖形中菱形的個(gè)數(shù)92+9+1=1.故選C.考點(diǎn):圖形的變化規(guī)律.8、B【解析】
連接BC,由網(wǎng)格求出AB,BC,AC的長(zhǎng),利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關(guān)鍵.9、C【解析】
正方體的表面展開圖,相對(duì)的面之間一定相隔一個(gè)正方形,根據(jù)這一特點(diǎn)對(duì)各選項(xiàng)分析判斷后利用排除法求解:【詳解】正方體的表面展開圖,相對(duì)的面之間一定相隔一個(gè)正方形,根據(jù)這一特點(diǎn)對(duì)各選項(xiàng)分析判斷后利用排除法求解:A、“預(yù)”的對(duì)面是“考”,“?!钡膶?duì)面是“成”,“中”的對(duì)面是“功”,故本選項(xiàng)錯(cuò)誤;B、“預(yù)”的對(duì)面是“功”,“?!钡膶?duì)面是“考”,“中”的對(duì)面是“成”,故本選項(xiàng)錯(cuò)誤;C、“預(yù)”的對(duì)面是“中”,“?!钡膶?duì)面是“考”,“成”的對(duì)面是“功”,故本選項(xiàng)正確;D、“預(yù)”的對(duì)面是“中”,“祝”的對(duì)面是“成”,“考”的對(duì)面是“功”,故本選項(xiàng)錯(cuò)誤.故選C【點(diǎn)睛】考核知識(shí)點(diǎn):正方體的表面展開圖.10、A【解析】
利用直接開平方法解方程.【詳解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故選A.【點(diǎn)睛】本題考查了解一元二次方程-直接開平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程.11、B【解析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉(zhuǎn)的性質(zhì)可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點(diǎn):旋轉(zhuǎn)的性質(zhì).12、C【解析】
先分別表示出小進(jìn)和小俊跑800米的時(shí)間,再根據(jù)小進(jìn)比小俊少用了40秒列出方程即可.【詳解】小進(jìn)跑800米用的時(shí)間為秒,小俊跑800米用的時(shí)間為秒,∵小進(jìn)比小俊少用了40秒,方程是,故選C.【點(diǎn)睛】本題考查了列分式方程解應(yīng)用題,能找出題目中的相等關(guān)系式是解此題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、或【解析】
作PH⊥CD,垂足為H,設(shè)運(yùn)動(dòng)時(shí)間為t秒,用t表示線段長(zhǎng),用勾股定理列方程求解.【詳解】設(shè)P,Q兩點(diǎn)從出發(fā)經(jīng)過t秒時(shí),點(diǎn)P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點(diǎn)從出發(fā)經(jīng)過1.6或4.8秒時(shí),點(diǎn)P,Q間的距離是10cm.故答案為或.【點(diǎn)睛】考查矩形的性質(zhì),勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關(guān)鍵.14、【解析】
坡度=坡角的正切值,據(jù)此直接解答.【詳解】解:∵,∴坡角=30°.【點(diǎn)睛】此題主要考查學(xué)生對(duì)坡度及坡角的理解及掌握.15、1.【解析】
由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理來求線段CD的長(zhǎng)度即可.【詳解】∵△ABC中,CD⊥AB于D,E是AC的中點(diǎn),DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,則根據(jù)勾股定理,得.故答案是:1.16、【解析】【分析】根據(jù)反比例函數(shù)圖象上點(diǎn)的橫、縱坐標(biāo)之積不變可得關(guān)于m的方程,解方程即可求得m的值,再由待定系數(shù)法即可求得反比例函數(shù)的解析式.【詳解】設(shè)反比例函數(shù)解析式為y=,由題意得:m2=2m×(-1),解得:m=-2或m=0(不符題意,舍去),所以點(diǎn)A(-2,-2),點(diǎn)B(-4,1),所以k=4,所以反比例函數(shù)解析式為:y=,故答案為y=.【點(diǎn)睛】本題考查了反比例函數(shù),熟知反比例函數(shù)圖象上點(diǎn)的橫、縱坐標(biāo)之積等于比例系數(shù)k是解題的關(guān)鍵.17、x≠1【解析】
根據(jù)分母不等于2列式計(jì)算即可得解.【詳解】由題意得,x-1≠2,解得x≠1.故答案為x≠1.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)為:分式有意義,分母不為2.18、.【解析】
如圖,根據(jù)正方形的性質(zhì)得:DE∥BC,則△ADE∽△ACB,列比例式可得結(jié)論.【詳解】如圖,∵四邊形CDEF是正方形,∴CD=ED,DE∥CF,設(shè)ED=x,則CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案為.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì)、正方形的性質(zhì),設(shè)未知數(shù),構(gòu)建方程是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)【解析】
(1)連接OD,根據(jù)等邊對(duì)等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,證得OD∥AC,證得OD⊥DF,從而證得DF是⊙O的切線;(2)連接BE,AB是直徑,∠AEB=90°,根據(jù)勾股定理得出BE=2AE,CE=4AE,然后在Rt△BEC中,即可求得tanC的值.【詳解】(1)連接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切線;(2)連接BE,∵AB是直徑,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE=,在RT△BEC中,tanC=.20、(1)當(dāng)t=時(shí),PQ∥BC;(2)﹣(t﹣)2+,當(dāng)t=時(shí),y有最大值為;(3)存在,當(dāng)t=時(shí),四邊形PQP′C為菱形【解析】
(1)只要證明△APQ∽△ABC,可得=,構(gòu)建方程即可解決問題;(2)過點(diǎn)P作PD⊥AC于D,則有△APD∽△ABC,理由相似三角形的性質(zhì)構(gòu)建二次函數(shù)即可解決問題;
(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根據(jù)OC=CQ,構(gòu)建方程即可解決問題;【詳解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,則AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴當(dāng)t=時(shí),PQ∥BC.(2)過點(diǎn)P作PD⊥AC于D,則有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣(t﹣)2+,∴當(dāng)t=時(shí),y有最大值為.(3)存在.理由:連接PP′,交AC于點(diǎn)O.∵四邊形PQP′C為菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴當(dāng)t=時(shí),四邊形PQP′C為菱形.【點(diǎn)睛】本題考查四邊形綜合題、相似三角形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造相似三角形解決問題,學(xué)會(huì)理由參數(shù)構(gòu)建方程解決問題,屬于中考?jí)狠S題.21、(1)見解析;(2).【解析】
(1)先證明△OAC≌△ODC,得出∠1=∠2,則∠2=∠4,故OC∥DE,即可證得DE⊥CF;(2)根據(jù)OA=OC得到∠2=∠3=30°,故∠COD=120°,再根據(jù)弧長(zhǎng)公式計(jì)算即可.【詳解】解:(1)DE⊥CF.理由如下:∵CF為切線,∴OC⊥CF,∵CA=CD,OA=OD,OC=OC,∴△OAC≌△ODC,∴∠1=∠2,而∠A=∠4,∴∠2=∠4,∴OC∥DE,∴DE⊥CF;(2)∵OA=OC,∴∠1=∠A=30°,∴∠2=∠3=30°,∴∠COD=120°,∴.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)與弧長(zhǎng)的計(jì)算,解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)與弧長(zhǎng)的公式.22、(1),45°;(2)不成立,理由見解析;(3).【解析】
(1)由正方形的性質(zhì),可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質(zhì)得到,∠CAB==45°,又因?yàn)椤螩BA=90°,所以∠AHB=45°.(2)由矩形的性質(zhì),及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質(zhì)可得∠CAE=∠CBF,,則∠CAB=60°,又因?yàn)椤螩BA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因?yàn)锳、E、F三點(diǎn)共線,及∠AFB=30°,∠AFC=90°,進(jìn)而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點(diǎn)共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當(dāng)A、E、F三點(diǎn)共線時(shí),由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當(dāng)A、E、F三點(diǎn)共線時(shí),同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當(dāng)A、E、F三點(diǎn)共線時(shí),點(diǎn)B到直線AE的距離為.【點(diǎn)睛】本題考察正方形的性質(zhì)和矩形的性質(zhì)以及三點(diǎn)共線,熟練掌握正方形的性質(zhì)和矩形的性質(zhì),知道分類討論三點(diǎn)共線問題是解題的關(guān)鍵.本題屬于中等偏難.23、(1)y=x2+x;(2)t=-4,r=-1.【解析】
(1)由①聯(lián)立方程組,根據(jù)拋物線y=ax2+bx與直線y=x只有一個(gè)交點(diǎn)可以求出b的值,由②可得對(duì)稱軸為x=1,從而得a的值,進(jìn)而得出結(jié)論;(2)進(jìn)行分類討論,分別求出t和r的值.【詳解】(1)y=ax2+bx和y=x聯(lián)立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵對(duì)稱軸為=1,∴=1,∴a=,∴y=x2+x.(2)因?yàn)閥=x2+x=(x-1)2+,所以頂點(diǎn)(1,)當(dāng)-2<r<1,且r≠0時(shí),當(dāng)x=r時(shí),y最大=r2+r=1.5r,得r=-1,當(dāng)x=-2時(shí),y最小=-4,所以,這時(shí)t=-4,r=-1.當(dāng)r≥1時(shí),y最大=,所以1.5r=,所以r=,不合題意,舍去,綜上可得,t=-4,r=-1.【點(diǎn)睛】本題考查二次函數(shù)綜合題,解題的關(guān)鍵是理解題意,利用二次函數(shù)的性質(zhì)解決問題.24、(1)、(t+6,t);(2)、當(dāng)t=2時(shí),S有最小值是16;(3)、理由見解析.【解析】
(1)如圖所示,過點(diǎn)E作EG⊥x軸于點(diǎn)G,則∠COP=∠PGE=90°,由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點(diǎn)E的坐標(biāo)為(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴當(dāng)t=2時(shí),S有最小值是16;(3)①假設(shè)∠FBD為直角,則點(diǎn)F在直線BC上,∵PF=OP<AB,∴點(diǎn)F不可能在BC上,即∠FBD不可能為直角;②假設(shè)∠FDB為直角,則點(diǎn)D在EF上,∵點(diǎn)D在矩形的對(duì)角線PE上,∴點(diǎn)D不可能在EF上,即∠FDB不可能為直角;③假設(shè)∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°,如圖2,作FH⊥BD于點(diǎn)H,則FH=PA,即4﹣t=6﹣t,方程無解,∴假設(shè)不成立,即△BDF不可能是等腰直角三角形.25、(1)直線的表達(dá)式為,雙曲線的表達(dá)式為;(2)①;②當(dāng)時(shí),的大小不發(fā)生變化,的值為;③t的值為或.【解析】
(1)由點(diǎn)利用待定系數(shù)法可求出直線的表達(dá)式;再由直線的表達(dá)式求出點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法即可求出雙曲線的表達(dá)式;(2)①先求出點(diǎn)C的橫坐標(biāo),再將其代入雙曲線的表達(dá)式求出點(diǎn)C的縱坐標(biāo),從而即可得出t的值;②如圖1(見解析),設(shè)直線AB交y軸于M,則,取CD的中點(diǎn)K,連接AK、BK.利用直角三角形的性質(zhì)證明A、D、B、C四點(diǎn)共圓,再
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥品記錄與數(shù)據(jù)管理要求培訓(xùn)課件
- 福建省2024八年級(jí)數(shù)學(xué)上冊(cè)第11章數(shù)的開方期末復(fù)習(xí)課件新版華東師大版
- 水彩梅花課件教學(xué)課件
- 糖尿病日宣傳活動(dòng)總結(jié)
- 車間事故應(yīng)急處理
- 剖腹產(chǎn)產(chǎn)后護(hù)理超詳細(xì)
- 好玩的梯子說課稿
- 安全教育在走廊和樓梯上
- 旅游規(guī)劃品牌授權(quán)準(zhǔn)則
- 商品砼合同書
- 【新課標(biāo)】人音版一上第四單元《可愛的動(dòng)物》大單元整體教學(xué)設(shè)計(jì)
- 2024年自然資源部直屬企事業(yè)單位公開招聘歷年(高頻重點(diǎn)提升專題訓(xùn)練)共500題附帶答案詳解
- 好書 讀書分享長(zhǎng)安的荔枝
- 人教版數(shù)學(xué)小升初銜接練習(xí)+解析(統(tǒng)計(jì)與概率)
- 勞動(dòng)項(xiàng)目五《晾衣服》教案
- 知道智慧網(wǎng)課《科技倫理》章節(jié)測(cè)試答案
- 9-XX人民醫(yī)院樣本外送檢測(cè)管理制度(試行)
- 山東省名??荚嚶?lián)盟2023-2024學(xué)年高一化學(xué)上學(xué)期11月期中試題
- 出納業(yè)務(wù)操作課程標(biāo)準(zhǔn)
- DZ∕T 0354-2020 局部生態(tài)地球化學(xué)評(píng)價(jià)規(guī)范(正式版)
- 2024委托運(yùn)營(yíng)協(xié)議
評(píng)論
0/150
提交評(píng)論