版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年江蘇省興華市四校中考數(shù)學(xué)仿真試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.計算的結(jié)果是()A. B. C. D.12.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π3.為了大力宣傳節(jié)約用電,某小區(qū)隨機(jī)抽查了10戶家庭的月用電量情況,統(tǒng)計如下表,關(guān)于這10戶家庭的月用電量說法正確的是()月用電量(度)2530405060戶數(shù)12421A.極差是3 B.眾數(shù)是4 C.中位數(shù)40 D.平均數(shù)是20.54.下表是某校合唱團(tuán)成員的年齡分布,對于不同的x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)5.魏晉時期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù).為計算圓周率建立了嚴(yán)密的理論和完善的算法.作圓內(nèi)接正多邊形,當(dāng)正多邊形的邊數(shù)不斷增加時,其周長就無限接近圓的周長,進(jìn)而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎(chǔ)上繼續(xù)努力,當(dāng)正多邊形的邊數(shù)增加24576時,得到了精確到小數(shù)點(diǎn)后七位的圓周率,這一成就在當(dāng)時是領(lǐng)先其他國家一千多年,如圖,依據(jù)“割圓術(shù)”,由圓內(nèi)接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π6.一個由圓柱和圓錐組成的幾何體如圖水平放置,其主(正)視圖為()A. B. C. D.7.對于一組統(tǒng)計數(shù)據(jù)1,1,6,5,1.下列說法錯誤的是()A.眾數(shù)是1 B.平均數(shù)是4 C.方差是1.6 D.中位數(shù)是68.下列運(yùn)算正確的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2?x﹣3=x﹣19.如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線對稱軸上一點(diǎn),則OP+AP的最小值為().A.3 B. C. D.10.如圖,點(diǎn)F是ABCD的邊AD上的三等分點(diǎn),BF交AC于點(diǎn)E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.46二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知矩形ABCD中,點(diǎn)E是BC邊上的點(diǎn),BE=2,EC=1,AE=BC,DF⊥AE,垂足為F.則下列結(jié)論:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正確的結(jié)論是_____.(把正確結(jié)論的序號都填上)12.計算:﹣22÷(﹣)=_____.13.已知一個多邊形的每一個外角都等于,則這個多邊形的邊數(shù)是.14.如圖,在△ABC中,∠C=120°,AB=4cm,兩等圓⊙A與⊙B外切,則圖中兩個扇形的面積之和(即陰影部分)為cm2(結(jié)果保留π).15.將直尺和直角三角尺按如圖方式擺放.若,,則________.16.對于實(shí)數(shù)a,b,定義運(yùn)算“*”:a*b=,例如:因?yàn)?>2,所以4*2=42﹣4×2=8,則(﹣3)*(﹣2)=___________.三、解答題(共8題,共72分)17.(8分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當(dāng)AB為直徑,求證:;(2)如圖2,當(dāng)AB為非直徑的弦,連接OB,則(1)的結(jié)論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點(diǎn)F,連接ED,且,若,,求CF的長度.18.(8分)已知:如圖,梯形ABCD,DC∥AB,對角線AC平分∠BCD,點(diǎn)E在邊CB的延長線上,EA⊥AC,垂足為點(diǎn)A.(1)求證:B是EC的中點(diǎn);(2)分別延長CD、EA相交于點(diǎn)F,若AC2=DC?EC,求證:AD:AF=AC:FC.19.(8分)已知:如圖,□ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.20.(8分)【發(fā)現(xiàn)證明】如圖1,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小聰把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.【類比引申】(1)如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;【聯(lián)想拓展】(2)如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.21.(8分)某校有3000名學(xué)生.為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問卷調(diào)查的學(xué)生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.種類ABCDEF上學(xué)方式電動車私家車公共交通自行車步行其他某校部分學(xué)生主要上學(xué)方式扇形統(tǒng)計圖某校部分學(xué)生主要上學(xué)方式條形統(tǒng)計圖根據(jù)以上信息,回答下列問題:參與本次問卷調(diào)查的學(xué)生共有____人,其中選擇B類的人數(shù)有____人.在扇形統(tǒng)計圖中,求E類對應(yīng)的扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計圖.若將A、C、D、E這四類上學(xué)方式視為“綠色出行”,請估計該校每天“綠色出行”的學(xué)生人數(shù).22.(10分)班級的課外活動,學(xué)生們都很積極.梁老師在某班對同學(xué)們進(jìn)行了一次關(guān)于“我喜愛的體育項(xiàng)目”的調(diào)査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:(1)調(diào)查了________名學(xué)生;(2)補(bǔ)全條形統(tǒng)計圖;(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為________;(4)學(xué)校將舉辦運(yùn)動會,該班將推選5位同學(xué)參加乒乓球比賽,有3位男同學(xué)和2位女同學(xué),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.23.(12分)《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學(xué)的重要著作之一,其中記載的“蕩杯問題”很有趣.《孫子算經(jīng)》記載“今有婦人河上蕩杯.津吏問曰:‘杯何以多?’婦人曰:‘家有客.’津吏曰:‘客幾何?’婦人曰:‘二人共飯,三人共羹,四人共肉,凡用杯六十五.’不知客幾何?”譯文:“2人同吃一碗飯,3人同吃一碗羹,4人同吃一碗肉,共用65個碗,問有多少客人?”24.一位運(yùn)動員推鉛球,鉛球運(yùn)行時離地面的高度(米)是關(guān)于運(yùn)行時間(秒)的二次函數(shù).已知鉛球剛出手時離地面的高度為米;鉛球出手后,經(jīng)過4秒到達(dá)離地面3米的高度,經(jīng)過10秒落到地面.如圖建立平面直角坐標(biāo)系.(Ⅰ)為了求這個二次函數(shù)的解析式,需要該二次函數(shù)圖象上三個點(diǎn)的坐標(biāo).根據(jù)題意可知,該二次函數(shù)圖象上三個點(diǎn)的坐標(biāo)分別是____________________________;(Ⅱ)求這個二次函數(shù)的解析式和自變量的取值范圍.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)同分母分式的加法法則計算可得結(jié)論.【詳解】===1.故選D.【點(diǎn)睛】本題考查了分式的加減法,解題的關(guān)鍵是掌握同分母分式的加減運(yùn)算法則.2、C【解析】
由切線的性質(zhì)定理得出∠OAB=90°,進(jìn)而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點(diǎn)睛】本題考查了切線的性質(zhì),圓周角定理,弧長的計算,解題的關(guān)鍵是先求出角度再用弧長公式進(jìn)行計算.3、C【解析】
極差、中位數(shù)、眾數(shù)、平均數(shù)的定義和計算公式分別對每一項(xiàng)進(jìn)行分析,即可得出答案.【詳解】解:A、這組數(shù)據(jù)的極差是:60-25=35,故本選項(xiàng)錯誤;
B、40出現(xiàn)的次數(shù)最多,出現(xiàn)了4次,則眾數(shù)是40,故本選項(xiàng)錯誤;
C、把這些數(shù)從小到大排列,最中間兩個數(shù)的平均數(shù)是(40+40)÷2=40,則中位數(shù)是40,故本選項(xiàng)正確;
D、這組數(shù)據(jù)的平均數(shù)(25+30×2+40×4+50×2+60)÷10=40.5,故本選項(xiàng)錯誤;
故選:C.【點(diǎn)睛】本題考查了極差、平均數(shù)、中位數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點(diǎn)的概念.4、D【解析】
由表易得x+(10-x)=10,所以總?cè)藬?shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【詳解】∵年齡為15歲和16歲的同學(xué)人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團(tuán)總?cè)藬?shù)為30人,∴合唱團(tuán)成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.5、C【解析】
連接OC、OD,根據(jù)正六邊形的性質(zhì)得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據(jù)題意計算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.【點(diǎn)睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計算公式是解題的關(guān)鍵.6、A【解析】【分析】根據(jù)主視圖是從幾何體正面看得到的圖形,認(rèn)真觀察實(shí)物,可得這個幾何體的主視圖為長方形上面一個三角形,據(jù)此即可得.【詳解】觀察實(shí)物,可知這個幾何體的主視圖為長方體上面一個三角形,只有A選項(xiàng)符合題意,故選A.【名師點(diǎn)睛】本題考查了幾何體的主視圖,明確幾何體的主視圖是從幾何體的正面看得到的圖形是解題的關(guān)鍵.7、D【解析】
根據(jù)中位數(shù)、眾數(shù)、方差等的概念計算即可得解.【詳解】A、這組數(shù)據(jù)中1都出現(xiàn)了1次,出現(xiàn)的次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,此選項(xiàng)正確;B、由平均數(shù)公式求得這組數(shù)據(jù)的平均數(shù)為4,故此選項(xiàng)正確;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此選項(xiàng)正確;D、將這組數(shù)據(jù)按從大到校的順序排列,第1個數(shù)是1,故中位數(shù)為1,故此選項(xiàng)錯誤;故選D.考點(diǎn):1.眾數(shù);2.平均數(shù);1.方差;4.中位數(shù).8、D【解析】分析:根據(jù)合并同類項(xiàng)法則,同底數(shù)冪相除,積的乘方的性質(zhì),同底數(shù)冪相乘的性質(zhì),逐一判斷即可.詳解:根據(jù)合并同類項(xiàng)法則,可知x3+x3=2x3,故不正確;根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相加,可知a6÷a2=a4,故不正確;根據(jù)積的乘方,等于各個因式分別乘方,可知(-3a3)2=9a6,故不正確;根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,可得x2?x﹣3=x﹣1,故正確.故選D.點(diǎn)睛:此題主要考查了整式的相關(guān)運(yùn)算,是一道綜合性題目,熟練應(yīng)用整式的相關(guān)性質(zhì)和運(yùn)算法則是解題關(guān)鍵.9、A【解析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點(diǎn)B,再利用配方法得到點(diǎn)A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點(diǎn)之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當(dāng)y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因?yàn)锳P垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當(dāng)H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【點(diǎn)睛】本題考查的是二次函數(shù)的綜合運(yùn)用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.10、B【解析】
連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據(jù)點(diǎn)F是□ABCD的邊AD上的三等分點(diǎn)得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點(diǎn)F是□ABCD的邊AD上的三等分點(diǎn),∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用與三角形的面積,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用與三角形的面積的相關(guān)知識點(diǎn).二、填空題(本大題共6個小題,每小題3分,共18分)11、①②【解析】
只要證明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解決問題.【詳解】∵四邊形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∵BE=2,EC=1,∴AE=AD=BC=3,AB==,∵AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△EAB≌△ADF,∴AF=BE=2,DF=AB=,故①②正確,不妨設(shè)DF平分∠ADC,則△ADF是等腰直角三角形,這個顯然不可能,故③錯誤,∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠DAF=∠CDF,∴∠CDF=∠AEB,∴sin∠CDF=sin∠AEB=,故④錯誤,故答案為①②.【點(diǎn)睛】本題考查矩形的性質(zhì)、全等三角形的判定和性質(zhì)、解直角三角形、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.12、1【解析】解:原式==1.故答案為1.13、5【解析】
∵多邊形的每個外角都等于72°,∵多邊形的外角和為360°,∴360°÷72°=5,∴這個多邊形的邊數(shù)為5.故答案為5.14、.【解析】
圖中陰影部分的面積就是兩個扇形的面積,圓A,B的半徑為2cm,則根據(jù)扇形面積公式可得陰影面積.【詳解】(cm2).故答案為.考點(diǎn):1、扇形的面積公式;2、兩圓相外切的性質(zhì).15、80°.【解析】
由于直尺外形是矩形,根據(jù)矩形的性質(zhì)可知對邊平行,所以∠4=∠3,再根據(jù)外角的性質(zhì)即可求出結(jié)果.【詳解】解:如圖所示,依題意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案為80°.【點(diǎn)睛】本題考查了平行線的性質(zhì)和三角形外角的性質(zhì),掌握三角形外角的性質(zhì)是解題的關(guān)鍵.16、-1.【解析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案為-1.三、解答題(共8題,共72分)17、(1)見解析;(2)成立;(3)【解析】
(1)根據(jù)圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據(jù)三角形內(nèi)角和定理求出即可;(2)根據(jù)圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關(guān)于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據(jù)圓周角定理得:,∴,∴由三角形內(nèi)角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長CG交AK于M,則,,∴,∴,延長KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點(diǎn),∵O為KN的中點(diǎn),∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設(shè),,∴,,∵,∴,解得:,∴,∴.【點(diǎn)睛】本題考查了垂徑定理、解直角三角形、等腰三角形的性質(zhì)、圓周角定理、勾股定理等知識點(diǎn),能綜合運(yùn)用知識點(diǎn)進(jìn)行推理是解此題的關(guān)鍵,綜合性比較強(qiáng),難度偏大.18、(1)詳見解析;(2)詳見解析.【解析】
(1)根據(jù)平行線的性質(zhì)結(jié)合角平分線的性質(zhì)可得出∠BCA=∠BAC,進(jìn)而可得出BA=BC,根據(jù)等角的余角相等結(jié)合等角對等邊,即可得出AB=BE,進(jìn)而可得出BE=BA=BC,此題得證;(2)根據(jù)AC2=DC?EC結(jié)合∠ACD=∠ECA可得出△ACD∽△ECA,根據(jù)相似三角形的性質(zhì)可得出∠ADC=∠EAC=90°,進(jìn)而可得出∠FDA=∠FAC=90°,結(jié)合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性質(zhì)可證出AD:AF=AC:FC.【詳解】(1)∵DC∥AB,∴∠DCA=∠BAC.∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.∵∠BAC+∠BAE=90°,∠ACB+∠E=90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中點(diǎn);(2)∵AC2=DC?EC,∴.∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、角平分線的性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是:(1)利用等角對等邊找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.19、(1)證明:∵ABCD是平行四邊形∴AB=CDAB∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE≌△CDF∴BE=DF【解析】證明:在□ABCD中∵AB∥CD∴∠ABE=∠CDF…………4分∵AE⊥BDCF⊥BD∴∠AEB=∠CFD=900……………………5分∵AB=CD∴△ABE≌△CDF…………6分∴BE=DF20、(1)DF=EF+BE.理由見解析;(2)CF=1.【解析】(1)把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AEF≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根據(jù)勾股定理有FG2=FC2+CG2=BE2+FC2;關(guān)鍵全等三角形的性質(zhì)得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE.理由:如圖1所示,∵AB=AD,∴把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,∵∠ADC=∠ABE=90°,∴點(diǎn)C、D、G在一條直線上,∴EB=DG,AE=AG,∠EAB=∠GAD,∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;(2)∵∠BAC=90°,AB=AC,∴將△ABE繞點(diǎn)A順時針旋轉(zhuǎn)90°得△ACG,連接FG,如圖2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,在△AGF與△AEF中,,∴△AEF≌△AGF,∴EF=FG,∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.“點(diǎn)睛”本題考查了全等三角形的性質(zhì)和判定,勾股定理,正方形的性質(zhì)的應(yīng)用,正確的作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵,此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.21、(1)450、63;⑵36°,圖見解析;(3)2460人.【解析】
(1)根據(jù)“騎電動車”上下的人數(shù)除以所占的百分比,即可得到調(diào)查學(xué)生數(shù);用調(diào)查學(xué)生數(shù)乘以選擇類的人數(shù)所占的百分比,即可求出選擇類的人數(shù).
(2)求出類的百分比,乘以即可求出類對應(yīng)的扇形圓心角的度數(shù);由總學(xué)生數(shù)求出選擇公共交通的人數(shù),補(bǔ)全統(tǒng)計圖即可;
(3)由總?cè)藬?shù)乘以“綠色出行”的百分比,即可得到結(jié)果.【詳解】(1)參與本次問卷調(diào)查的學(xué)生共有:(人);選擇類的人數(shù)有:故答案為450、63;(2)類所占的百分比為:類對應(yīng)的扇形圓心角的度數(shù)為:選擇類的人數(shù)為:(人).補(bǔ)全條形統(tǒng)計圖為:(3)估計該校每天“綠色出行”的學(xué)生人數(shù)為3000×(1-14%-4%)=2460
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度畜禽養(yǎng)殖場地租賃及管理服務(wù)協(xié)議3篇
- 二零二五年度公司股權(quán)轉(zhuǎn)讓與員工安置保障合同3篇
- 2025年度年度合伙開設(shè)甜品店合同3篇
- 二零二五年度農(nóng)業(yè)科技公司聘用兼職農(nóng)業(yè)技術(shù)員合同書3篇
- 2025年度農(nóng)村土地租賃與農(nóng)業(yè)產(chǎn)業(yè)化項(xiàng)目合作協(xié)議2篇
- 2025年度超市綠色環(huán)保供應(yīng)鏈合作協(xié)議書3篇
- 2025年度農(nóng)村保潔員工作績效評估合同2篇
- 2025年常用食品供貨合同模板范文
- 2025年度國有土地租賃協(xié)議合同(科技孵化器)3篇
- 二零二五年度智能硬件內(nèi)部股東股權(quán)轉(zhuǎn)讓合同模板3篇
- 基于多元回歸的計量經(jīng)濟(jì)學(xué)論文
- 數(shù)字媒體專業(yè)發(fā)展規(guī)劃
- 項(xiàng)目風(fēng)險預(yù)測與防范事故應(yīng)急預(yù)案
- 15D502等電位連接安裝圖集
- DB44-T 1641-2015 LED 洗墻燈地方標(biāo)準(zhǔn)
- 網(wǎng)絡(luò)攻防試題集合
- Cpk 計算標(biāo)準(zhǔn)模板
- 靜脈留置針的日常維護(hù)
- 2023年消費(fèi)者咨詢業(yè)務(wù)試題及答案
- 推土機(jī)的應(yīng)用
- STK基礎(chǔ)教程學(xué)習(xí)版
評論
0/150
提交評論