2022年黑龍江省大慶杜爾伯特縣聯(lián)考中考數(shù)學押題卷含解析_第1頁
2022年黑龍江省大慶杜爾伯特縣聯(lián)考中考數(shù)學押題卷含解析_第2頁
2022年黑龍江省大慶杜爾伯特縣聯(lián)考中考數(shù)學押題卷含解析_第3頁
2022年黑龍江省大慶杜爾伯特縣聯(lián)考中考數(shù)學押題卷含解析_第4頁
2022年黑龍江省大慶杜爾伯特縣聯(lián)考中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年黑龍江省大慶杜爾伯特縣聯(lián)考中考數(shù)學押題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F(xiàn).已知AB=1,BC=3,DE=2,則EF的長為()A.4 B..5 C.6 D.82.下列實數(shù)中,有理數(shù)是()A. B. C.π D.3.若關于x的一元二次方程x2﹣2x+m=0有兩個不相等的實數(shù)根,則m的取值范圍是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>14.如圖,在△ABC中,DE∥BC交AB于D,交AC于E,錯誤的結論是(

).A. B. C. D.5.下列四個命題中,真命題是()A.相等的圓心角所對的兩條弦相等B.圓既是中心對稱圖形也是軸對稱圖形C.平分弦的直徑一定垂直于這條弦D.相切兩圓的圓心距等于這兩圓的半徑之和6.如圖,矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點,以點A為圓心,AD為半徑作弧交AB于點E,以點B為圓心,BF為半徑作弧交BC于點G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.67.如圖,在△ABC中,以點B為圓心,以BA長為半徑畫弧交邊BC于點D,連接AD.若∠B=40°,∠C=36°,則∠DAC的度數(shù)是()A.70° B.44° C.34° D.24°8.如圖,在平面直角坐標系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經(jīng)過△ABC區(qū)域(包括邊界),則a的取值范圍是()A.

B.

C.

或D.9.在解方程-1=時,兩邊同時乘6,去分母后,正確的是()A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)10.關于的方程有實數(shù)根,則整數(shù)的最大值是()A.6 B.7 C.8 D.9二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,AB=AC,BE、AD分別是邊AC、BC上的高,CD=2,AC=6,那么CE=________.12.對甲、乙兩臺機床生產(chǎn)的零件進行抽樣測量,其平均數(shù)、方差計算結果如下:機床甲:=10,=0.02;機床乙:=10,=0.06,由此可知:________(填甲或乙)機床性能好.13.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C,D均在格點上,AB與CD相交于點E.(1)AB的長等于_____;(2)點F是線段DE的中點,在線段BF上有一點P,滿足,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_____.14.在某一時刻,測得一根長為1.5m的標桿的影長為3m,同時測得一根旗桿的影長為26m,那么這根旗桿的高度為_____m.15.分式方程x2x-1=1-216.用48米長的竹籬笆在空地上,圍成一個綠化場地,現(xiàn)有兩種設計方案,一種是圍成正方形的場地;另一種是圍成圓形場地.現(xiàn)請你選擇,圍成________(圓形、正方形兩者選一)場在面積較大.三、解答題(共8題,共72分)17.(8分)如圖,已知:△ABC中,AB=AC,M是BC的中點,D、E分別是AB、AC邊上的點,且BD=CE.求證:MD=ME.18.(8分)小王上周五在股市以收盤價(收市時的價格)每股25元買進某公司股票1000股,在接下來的一周交易日內,小王記下該股票每日收盤價格相比前一天的漲跌情況:(單位:元)星期一二三四五每股漲跌(元)+2﹣1.4+0.9﹣1.8+0.5根據(jù)上表回答問題:(1)星期二收盤時,該股票每股多少元?(2)周內該股票收盤時的最高價,最低價分別是多少?(3)已知買入股票與賣出股票均需支付成交金額的千分之五的交易費.若小王在本周五以收盤價將全部股票賣出,他的收益情況如何?19.(8分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC,AB于點E,F(xiàn).(1)若∠B=30°,求證:以A,O,D,E為頂點的四邊形是菱形;(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為,AD的長為.20.(8分)如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.(1)b=_________,c=_________,點B的坐標為_____________;(直接填寫結果)(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.21.(8分)(1)計算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化簡,再求值?(a2﹣b2),其中a=,b=﹣2.22.(10分)講授“軸對稱”時,八年級教師設計了如下:四種教學方法:①教師講,學生聽②教師讓學生自己做③教師引導學生畫圖發(fā)現(xiàn)規(guī)律④教師讓學生對折紙,觀察發(fā)現(xiàn)規(guī)律,然后畫圖為調查教學效果,八年級教師將上述教學方法作為調研內容發(fā)到全年級8個班420名同學手中,要求每位同學選出自己最喜歡的一種.他隨機抽取了60名學生的調查問卷,統(tǒng)計如圖(1)請將條形統(tǒng)計圖補充完整;(2)計算扇形統(tǒng)計圖中方法③的圓心角的度數(shù)是;(3)八年級同學中最喜歡的教學方法是哪一種?選擇這種教學方法的約有多少人?23.(12分)某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當?shù)慕祪r措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?24.某家電銷售商場電冰箱的銷售價為每臺1600元,空調的銷售價為每臺1400元,每臺電冰箱的進價比每臺空調的進價多300元,商場用9000元購進電冰箱的數(shù)量與用7200元購進空調數(shù)量相等.(1)求每臺電冰箱與空調的進價分別是多少?(2)現(xiàn)在商場準備一次購進這兩種家電共100臺,設購進電冰箱x臺,這100臺家電的銷售利潤為Y元,要求購進空調數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于16200元,請分析合理的方案共有多少種?(3)實際進貨時,廠家對電冰箱出廠價下調K(0<K<150)元,若商場保持這兩種家電的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺家電銷售總利潤最大的進貨方案.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

解:∵AD∥BE∥CF,根據(jù)平行線分線段成比例定理可得,即,解得EF=6,故選C.2、B【解析】

實數(shù)分為有理數(shù),無理數(shù),有理數(shù)有分數(shù)、整數(shù),無理數(shù)有根式下不能開方的,等,很容易選擇.【詳解】A、二次根2不能正好開方,即為無理數(shù),故本選項錯誤,

B、無限循環(huán)小數(shù)為有理數(shù),符合;

C、為無理數(shù),故本選項錯誤;

D、不能正好開方,即為無理數(shù),故本選項錯誤;故選B.【點睛】本題考查的知識點是實數(shù)范圍內的有理數(shù)的判斷,解題關鍵是從實際出發(fā)有理數(shù)有分數(shù),自然數(shù)等,無理數(shù)有、根式下開不盡的從而得到了答案.3、B【解析】

根據(jù)方程有兩個不相等的實數(shù)根結合根的判別式即可得出△=4-4m>0,解之即可得出結論.【詳解】∵關于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故選B.【點睛】本題考查了根的判別式,熟練掌握“當△>0時,方程有兩個不相等的兩個實數(shù)根”是解題的關鍵.4、D【解析】

根據(jù)平行線分線段成比例定理及相似三角形的判定與性質進行分析可得出結論.【詳解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正確;D錯誤;故選D.【點睛】考點:1.平行線分線段成比例;2.相似三角形的判定與性質.5、B【解析】試題解析:A.在同圓或等圓中,相等的圓心角所對的兩條弦相等,故A項錯誤;B.圓既是中心對稱圖形也是軸對稱圖形,正確;C.平分弦(不是直徑)的直徑一定垂直于這條弦,故C選項錯誤;D.外切兩圓的圓心距等于這兩圓的半徑之和,故選項D錯誤.故選B.6、A【解析】

根據(jù)圖形可以求得BF的長,然后根據(jù)圖形即可求得S1-S2的值.【詳解】∵在矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.【點睛】本題考查扇形面積的計算、矩形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.7、C【解析】

易得△ABD為等腰三角形,根據(jù)頂角可算出底角,再用三角形外角性質可求出∠DAC【詳解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故選C.【點睛】本題考查三角形的角度計算,熟練掌握三角形外角性質是解題的關鍵.8、B【解析】試題解析:如圖所示:分兩種情況進行討論:當時,拋物線經(jīng)過點時,拋物線的開口最小,取得最大值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:當時,拋物線經(jīng)過點時,拋物線的開口最小,取得最小值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:故選B.點睛:二次函數(shù)二次項系數(shù)決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對值越大,開口越小.9、D【解析】解:,∴3(x﹣1)﹣6=2(3x+1),故選D.點睛:本題考查了等式的性質,解題的關鍵是正確理解等式的性質,本題屬于基礎題型.10、C【解析】

方程有實數(shù)根,應分方程是一元二次方程與不是一元二次方程,兩種情況進行討論,當不是一元二次方程時,a-6=0,即a=6;當是一元二次方程時,有實數(shù)根,則△≥0,求出a的取值范圍,取最大整數(shù)即可.【詳解】當a-6=0,即a=6時,方程是-1x+6=0,解得x=;

當a-6≠0,即a≠6時,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,

取最大整數(shù),即a=1.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】∵AB=AC,AD⊥BC,∴BD=CD=2,∵BE、AD分別是邊AC、BC上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ACD∽△BCE,∴,∴,∴CE=,故答案為.12、甲.【解析】試題分析:根據(jù)方差的意義可知,方差越小,穩(wěn)定性越好,由此即可求出答案.試題解析:因為甲的方差小于乙的方差,甲的穩(wěn)定性好,所以甲機床的性能好.故答案為甲.考點:1.方差;2.算術平均數(shù).13、見圖形【解析】分析:(Ⅰ)利用勾股定理計算即可;(Ⅱ)連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F,因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K,因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3;詳解:(Ⅰ)AB的長==;(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格點G、H,連接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.連接EK交BF于P,可證BP:PF=5:3.故答案為(Ⅰ);(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F.因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3.點睛:本題考查了作圖﹣應用與設計,平行線分線段成比例定理等知識,解題的關鍵是靈活運用所學知識解決問題,所以中考常考題型.14、13【解析】

根據(jù)同時同地物高與影長成比列式計算即可得解.【詳解】解:設旗桿高度為x米,由題意得,,解得x=13.故答案為13.【點睛】本題考查投影,解題的關鍵是應用相似三角形.15、x=﹣1.【解析】試題分析:分式方程變形后,去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.試題解析:去分母得:x=2x﹣1+2,解得:x=﹣1,經(jīng)檢驗x=﹣1是分式方程的解.考點:解分式方程.16、圓形【解析】

根據(jù)竹籬笆的長度可知所圍成的正方形的邊長,進而可計算出所圍成的正方形的面積;根據(jù)圓的周長公式,可知所圍成的圓的半徑,進而將圓的面積計算出來,兩者進行比較.【詳解】圍成的圓形場地的面積較大.理由如下:設正方形的邊長為a,圓的半徑為R,∵竹籬笆的長度為48米,∴4a=48,則a=1.即所圍成的正方形的邊長為1;2π×R=48,∴R=,即所圍成的圓的半徑為,∴正方形的面積S1=a2=144,圓的面積S2=π×()2=,∵144<,∴圍成的圓形場地的面積較大.故答案為:圓形.【點睛】此題主要考查實數(shù)的大小的比較在實際生活中的應用,所以學生在學這一部分時一定要聯(lián)系實際,不能死學.三、解答題(共8題,共72分)17、證明見解析.【解析】試題分析:根據(jù)等腰三角形的性質可證∠DBM=∠ECM,可證△BDM≌△CEM,可得MD=ME,即可解題.試題解析:證明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中點,∴BM=CM.在△BDM和△CEM中,∵,∴△BDM≌△CEM(SAS).∴MD=ME.考點:1.等腰三角形的性質;2.全等三角形的判定與性質.18、(1)25.6元;(2)收盤最高價為27元/股,收盤最低價為24.7元/股;(3)-51元,虧損51元.【解析】試題分析:(1)根據(jù)有理數(shù)的加減法的運算方法,求出星期二收盤時,該股票每股多少元即可.(2)這一周內該股票星期一的收盤價最高,星期四的收盤價最低.(3)用本周五以收盤價將全部股票賣出后得到的錢數(shù)減去買入股票與賣出股票均需支付的交易費,判斷出他的收益情況如何即可.試題解析:(1)星期二收盤價為25+2?1.4=25.6(元/股)答:該股票每股25.6元.(2)收盤最高價為25+2=27(元/股)收盤最低價為25+2?1.45+0.9?1.8=24.7(元/股)答:收盤最高價為27元/股,收盤最低價為24.7元/股.(3)(25.2-25)×1000-5‰×1000×(25.2+25)=200-251=-51(元)答:小王的本次收益為-51元.19、(1)見解析;(2)【解析】

(1)先通過證明△AOE為等邊三角形,得出AE=OD,再根據(jù)“同位角相等,兩直線平行”證明AE//OD,從而證得四邊形AODE是平行四邊形,再根據(jù)“一組鄰邊相等的平行四邊形為菱形”即可得證.(2)利用在Rt△OBD中,sin∠B==可得出半徑長度,在Rt△ODB中BD=,可求得BD的長,由CD=CB﹣BD可得CD的長,在RT△ACD中,AD=,即可求出AD長度.【詳解】解:(1)證明:連接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等邊三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四邊形AODE是平行四邊形,∵OD=OA∴四邊形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【點睛】本題主要考查圓中的計算問題、菱形以及相似三角形的判定與性質20、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解析】

(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯(lián)立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).21、(1)-2(2)-【解析】試題分析:(1)將原式第一項被開方數(shù)8變?yōu)?×2,利用二次根式的性質化簡第二項利用特殊角的三角函數(shù)值化簡,第三項利用零指數(shù)公式化簡,最后一項利用負指數(shù)公式化簡,把所得的結果合并即可得到最后結果;(2)先把和a2﹣b2分解因式約分化簡,然后將a和b的值代入化簡后的式子中計算,即可得到原式的值.解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1=2﹣2×+1﹣3=2﹣+1﹣3=﹣2;(2)?(a2﹣b2)=?(a+b)(a﹣b)=a+b,當a=,b=﹣2時,原式=+(﹣2)=﹣.22、解:(1)見解析;(2)108°;(3)最喜歡方法④,約有189人.【解析】

(1)由題意可知:喜歡方法②的學生有60-6-18-27=9(人);(2)求方法③的圓心角應先求所占比值,再乘以360°;(3)根據(jù)條形的高低可判斷喜歡方法④的學生最多,人數(shù)應該等于總人數(shù)乘以喜歡方法④所占的比例;【詳解】(1)方法②人數(shù)為60?6?18?27=9(人);補條形圖如圖:(2)方法③的圓心角為故答案為108°(3)由圖可以看出喜歡方法④的學生最多,人數(shù)為(人);【點睛】考查扇形統(tǒng)計圖,條形統(tǒng)計圖,用樣本估計總體,比較基礎,難度不大,是中考??碱}型.23、100或200【解析】試題分析:此題利用每一臺冰箱的利潤×每天售

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論