




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆安徽省黃山市屯溪區(qū)第一中學高一下數(shù)學期末經(jīng)典模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,,均為正實數(shù),則三個數(shù),,()A.都大于2 B.都小于2C.至少有一個不大于2 D.至少有一個不小于22.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.6 B.4C. D.3.直線的傾斜角為A. B. C. D.4.某種產(chǎn)品的廣告費用支出與銷售額之間具有線性相關關系,根據(jù)下表數(shù)據(jù)(單位:百萬元),由最小二乘法求得回歸直線方程為.現(xiàn)發(fā)現(xiàn)表中有個數(shù)據(jù)看不清,請你推斷該數(shù)據(jù)值為()345582834★5672A.65 B.60 C.55 D.505.不等式x2+ax+4>0對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為()A.(﹣4,4) B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,+∞) D.6.已知,,,則的大小關系為()A. B. C. D.7.若,則的最小值為()A. B. C. D.8.公差不為零的等差數(shù)列的前項和為.若是的等比中項,,則等于()A.18 B.24 C.60 D.909.已知數(shù)列的前項和為,直線與圓:交于兩點,且.記,其前項和為,若存在,使得有解,則實數(shù)取值范圍是()A. B. C. D.10.“()”是“函數(shù)是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知,且,則________.12.若數(shù)列滿足,且對于任意的,都有,則___;數(shù)列前10項的和____.13.數(shù)列的前項和,則的通項公式_____.14.在等比數(shù)列中,,的值為________15.已知為的三個內(nèi)角A,B,C的對邊,向量,.若,且,則B=16.函數(shù)的最小值為____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓心在軸的正半軸上,且半徑為2的圓被直線截得的弦長為.(1)求圓的方程;(2)設動直線與圓交于兩點,則在軸正半軸上是否存在定點,使得直線與直線關于軸對稱?若存在,請求出點的坐標;若不存在,請說明理由.18.2016年崇明區(qū)政府投資8千萬元啟動休閑體育新鄉(xiāng)村旅游項目.規(guī)劃從2017年起,在今后的若干年內(nèi),每年繼續(xù)投資2千萬元用于此項目.2016年該項目的凈收入為5百萬元,并預測在相當長的年份里,每年的凈收入均為上一年的基礎上增長.記2016年為第1年,為第1年至此后第年的累計利潤(注:含第年,累計利潤=累計凈收入﹣累計投入,單位:千萬元),且當為正值時,認為該項目贏利.(1)試求的表達式;(2)根據(jù)預測,該項目將從哪一年開始并持續(xù)贏利?請說明理由.19.已知圓(為坐標原點),直線.(1)過直線上任意一點作圓的兩條切線,切點分別為,求四邊形面積的最小值.(2)過點的直線分別與圓交于點(不與重合),若,試問直線是否過定點?并說明理由.20.已知函數(shù)的最小正周期為,且該函數(shù)圖象上的最低點的縱坐標為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間及對稱軸方程.21.某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求圖中的值;(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分,眾數(shù),中位數(shù);(3)若這100名學生語文成績某些分數(shù)段的人數(shù)()與數(shù)學成績相應分數(shù)段的人數(shù)()之比如下表所示,求數(shù)學成績在[50,90)之外的人數(shù).分數(shù)段[50,60)[60,70)[70,80)[80,90)1:12:13:44:5
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由題意得,當且僅當時,等號成立,所以至少有一個不小于,故選D.2、A【解析】該立方體是正方體,切掉一個三棱柱,所以體積為,故選A。點睛:本題考查三視圖還原,并求體積。此類題關鍵就是三視圖的還原,還原過程中,本題采取切割法處理,有圖可知,該立方體應該是正方體進行切割產(chǎn)生的,所以我們在畫圖的過程在,對正方體進行切割比較即可。3、D【解析】
把直線方程的一般式方程化為斜截式方程,求出斜率,根據(jù)斜率與傾斜角的關系,求出傾斜角.【詳解】,設直線的傾斜角為,,故本題選D.【點睛】本題考查了直線方程之間的轉(zhuǎn)化、利用斜率求直線的傾斜角問題.4、B【解析】
求出樣本中心點的坐標,代入線性回歸方程求解.【詳解】設表中看不清的數(shù)據(jù)為,則,,代入,得,解得.故選:.【點睛】本題考查線性回歸方程,明確線性回歸方程恒過樣本點的中心是關鍵,是基礎題.5、A【解析】
根據(jù)二次函數(shù)的性質(zhì)求解.【詳解】不等式x2+ax+4>0對任意實數(shù)x恒成立,則,∴.故選A.【點睛】本題考查一元二次不等式恒成立問題,解題時可借助二次函數(shù)的圖象求解.6、B【解析】
根據(jù)對數(shù)函數(shù)的單調(diào)性可知都大于1,把化成后可得的大小,從而可得的大小關系.【詳解】因為及都是上的增函數(shù),故,,又,故,選B.【點睛】對數(shù)的大小比較,可通過尋找合適的單調(diào)函數(shù)來構建大小關系,如果底數(shù)不統(tǒng)一,可以利用對數(shù)的運算性質(zhì)統(tǒng)一底數(shù).不同類型的數(shù)比較大小,應找一個中間數(shù),通過它實現(xiàn)大小關系的傳遞.7、D【解析】
根據(jù)對數(shù)運算可求得且,,利用基本不等式可求得最小值.【詳解】由得:且,(當且僅當時取等號)本題正確選項:【點睛】本題考查利用基本不等式求解和的最小值的問題,關鍵是能夠利用對數(shù)運算得到積的定值,屬于基礎題.8、C【解析】
由等比中項的定義可得,根據(jù)等差數(shù)列的通項公式及前n項和公式,列方程解出和,進而求出.【詳解】因為是與的等比中項,所以,即,整理得,又因為,所以,故,故選C.【點睛】該題考查的是有關等差數(shù)列求和問題,涉及到的知識點有等差數(shù)列的通項,等比中項的定義,等差數(shù)列的求和公式,正確應用相關公式是解題的關鍵.9、D【解析】
根據(jù)題意,先求出弦長,再表示出,得到,求出數(shù)列的通項公式,再表示出,用錯位相減求和求出,再求解即可.【詳解】根據(jù)題意,圓的半徑,圓心到直線的距離,所以弦長,所以,當時,,所以,時,,所以,得,所以數(shù)列是以為首項,為公比的等比數(shù)列,所以,,,所以,,,所以,由有解,,只需大于的最小值即可,因為,所以,所以.故選:D【點睛】本題主要考查求圓的弦長、由和求數(shù)列通項、錯位相減求數(shù)列的和和解不等式有解的情況,考查學生的分析轉(zhuǎn)化能力和計算能力,屬于難題.10、C【解析】若,則,函數(shù)為奇函數(shù),所以充分性成立;反之,若函數(shù)是奇函數(shù),則,即,因此必要性也是成立,所以“”是“函數(shù)是奇函數(shù)”充要條件,故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:由得:解方程組:得:或因為,所以所以不合題意,舍去所以,所以,答案應填:.考點:同角三角函數(shù)的基本關系和兩角差的三角函數(shù)公式.12、,【解析】試題分析:由得由得,所以數(shù)列為等比數(shù)列,因此考點:等比數(shù)列通項與和項13、【解析】
根據(jù)和之間的關系,應用公式得出結(jié)果【詳解】當時,;當時,;∴故答案為【點睛】本題考查了和之間的關系式,注意當和時要分開討論,題中的數(shù)列非等差數(shù)列.本題屬于基礎題14、【解析】
根據(jù)等比數(shù)列的性質(zhì),可得,即可求解.【詳解】由題意,根據(jù)等比數(shù)列的性質(zhì),可得,解得.故答案為:【點睛】本題主要考查了等比數(shù)列的性質(zhì)的應用,其中解答熟記等比數(shù)列的性質(zhì),準確計算是解答的關鍵,著重考查了計算能力,屬于基礎題.15、【解析】
根據(jù)得,再利用正弦定理得,化簡得出角的大小。再根據(jù)三角形內(nèi)角和即可得B.【詳解】根據(jù)題意,由正弦定理可得則所以答案為。【點睛】本題主要考查向量與三角形正余弦定理的綜合應用,屬于基礎題。16、【解析】
將函數(shù)構造成的形式,用換元法令,在定義域上根據(jù)新函數(shù)的單調(diào)性求函數(shù)最小值,之后可得原函數(shù)最小值?!驹斀狻坑深}得,,令,則函數(shù)在遞增,可得的最小值為,則的最小值為.故答案為:【點睛】本題考查了換元法,以及函數(shù)的單調(diào)性,是基礎題。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)當點為時,直線與直線關于軸對稱,詳見解析【解析】
(1)設圓的方程為,由垂徑定理求得弦長,再由弦長為可求得,從而得圓的方程;(2)假設存在定點,使得直線與直線關于軸對稱,則,同時設,直線方程代入圓方程后用韋達定理得,即為,代入可求得,說明存在.【詳解】(1)設圓的方程為:圓心到直線的距離根據(jù)垂徑定理得,,解得,,故圓的方程為(2)假設存在定點,使得直線與直線關于軸對稱,那么,設聯(lián)立得:由.故存在,當點為時,直線與直線關于軸對稱.【點睛】本題考查圓的標準方程,考查直線與圓的位置關系.在解決存在性命題時,一般都是假設存在,然后根據(jù)已知去推理求解.象本題定點問題,就是假設存在定點,用設而不求法推理求解,解出值,如不能解出值,說明不存在.18、(1);(2).【解析】試題分析:(1)由題意知,第一年至此后第年的累計投入為(千萬元),第年至此后第年的累計凈收入為,利用等比數(shù)列數(shù)列的求和公式可得;(2)由,利用指數(shù)函數(shù)的單調(diào)性即可得出.試題解析:(1)由題意知,第1年至此后第n(n∈N*)年的累計投入為8+2(n﹣1)=2n+6(千萬元),第1年至此后第n(n∈N*)年的累計凈收入為+×+×+…+×=(千萬元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千萬元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣2],∴當n≤3時,f(n+1)﹣f(n)<1,故當n≤2時,f(n)遞減;當n≥2時,f(n+1)﹣f(n)>1,故當n≥2時,f(n)遞增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴該項目將從第8年開始并持續(xù)贏利.答:該項目將從2123年開始并持續(xù)贏利;方法二:設f(x)=﹣2x﹣7(x≥1),則f′(x)=,令f'(x)=1,得=≈=5,∴x≈2.從而當x∈[1,2)時,f'(x)<1,f(x)遞減;當x∈(2,+∞)時,f'(x)>1,f(x)遞增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴該項目將從第8年開始并持續(xù)贏利.答:該項目將從2123年開始并持續(xù)贏利.19、(1)12;(2)過定點,理由見解析【解析】
(1)由,得過點的切線長,所以四邊形的面積為,即可得到本題答案;(2)設直線的方程為,則直線的方程為.聯(lián)立方程,消去,整理得,得,,所以,令,即可得到本題答案.【詳解】(1)由題意可得圓心到直線的距離為,從而,則過點的切線長.故四邊形的面積為,即四邊形面積的最小值為12.(2)因為,所以直線與直線的斜率都存在,且不為0.設直線的方程為,則直線的方程為.聯(lián)立方程,消去,整理得解得或,則.同理可得.所以.令,得,解得.取,可以證得,所以直線過定點.當時,軸,易知與均為正三角形,直線的方程為,也過定點.綜上,直線過定點.【點睛】本題主要考查與橢圓相關的四邊形面積的范圍問題以及與橢圓有關的直線過定點問題,聯(lián)立直線方程與橢圓方程,利用韋達定理是解決此類問題的常用方法.20、(1);(2)增區(qū)間是,對稱軸為【解析】
(1)由周期求得ω,再由函數(shù)圖象上的最低點的縱坐標為﹣3求得A,則函數(shù)解析式可求;(2)直接利用復合函數(shù)的單調(diào)性求函數(shù)f(x)的單調(diào)遞增區(qū)間,再由2x求解x可得函數(shù)f(x)的對稱軸方程.【詳解】(1)因為的最小正周期為因為,,,∴.又函數(shù)圖象上的最低點縱坐標為,且∴∴.(2)由,可得可得單調(diào)遞增區(qū)間.由,得.所以函數(shù)的對稱軸方程為.【點睛】本題考查函數(shù)解析式的求法,考查y=Asin(ωx+φ)型函數(shù)的性質(zhì),是基礎題.21、(1)0.005;(2)平均分為73,眾數(shù)為65,中位數(shù)為;(3)10【解析】
(1)根據(jù)頻率之和為1,直接列式計算即可;(2)平均數(shù)等于每組的中間值乘以該組頻率,再求和;眾數(shù)指頻率最大的一組的中間值;中位數(shù)兩端的小長
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)學知識 鼻咽癌IMRT靶區(qū)及劑量設計指南(1)學習課件
- 政治愛國教育
- scada業(yè)績合同樣本
- 護理臨床路徑案例分享
- 保姆阿姨合同標準文本
- 農(nóng)業(yè)綠色發(fā)展路徑與對策研究
- 借用公司資質(zhì)協(xié)議合同標準文本
- 中鐵集團采購合同標準文本
- 兒童托管班合同標準文本
- 不玩尖銳物品安全教育
- 物流運輸過程中的法律法規(guī)試題及答案
- 專升本思政全新模式試題及答案
- 2024年內(nèi)蒙古地質(zhì)礦產(chǎn)集團有限公司運營管理分公司招聘考試真題
- Unit 7 A Day to Remember Section A (課件)-2024-2025學年英語人教版7年級下冊
- 中央2025年中央社會工作部所屬事業(yè)單位招聘11人筆試歷年參考題庫附帶答案詳解
- 2024年湖北武漢中考滿分作文《不虛此行》
- 暨南大道西延惠山段(江陰界-S261)新建工程報告書
- 消費行為影響機制-深度研究
- 健康咨詢與服務推廣協(xié)議
- 教師語言與溝通藝術知到智慧樹章節(jié)測試課后答案2024年秋溫州大學
- DeepSeek入門到精通-實操+進階玩法培訓
評論
0/150
提交評論