2023-2024學年廣東省深圳市福田區(qū)耀華實驗學校國際班高一下數(shù)學期末復習檢測試題含解析_第1頁
2023-2024學年廣東省深圳市福田區(qū)耀華實驗學校國際班高一下數(shù)學期末復習檢測試題含解析_第2頁
2023-2024學年廣東省深圳市福田區(qū)耀華實驗學校國際班高一下數(shù)學期末復習檢測試題含解析_第3頁
2023-2024學年廣東省深圳市福田區(qū)耀華實驗學校國際班高一下數(shù)學期末復習檢測試題含解析_第4頁
2023-2024學年廣東省深圳市福田區(qū)耀華實驗學校國際班高一下數(shù)學期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年廣東省深圳市福田區(qū)耀華實驗學校國際班高一下數(shù)學期末復習檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.經過平面α外兩點,作與α平行的平面,則這樣的平面可以作()A.1個或2個B.0個或1個C.1個D.0個2.設等差數(shù)列{an}的前n項和為Sn,a2+a4=6,則S5等于()A.10 B.12 C.15 D.303.不等式x2+ax+4>0對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為()A.(﹣4,4) B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,+∞) D.4.已知函數(shù)(,)的部分圖像如圖所示,則的值分別是()A. B.C. D.5.記復數(shù)的虛部為,已知滿足,則為()A. B. C.2 D.6.已知,且,,則()A. B. C. D.7.已知等差數(shù)列中,,,則的值為()A.51 B.34 C.64 D.5128.已知在中,,則的形狀是A.銳角三角形 B.鈍角三角形C.等腰三角形 D.直角三角形9.下面一段程序執(zhí)行后的結果是()A.6 B.4 C.8 D.1010.在中,角的對邊分別是,已知,則()A. B. C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.若,則_________.12.已知,,兩圓和只有一條公切線,則的最小值為________13.在中,角所對的邊分別為.若,,則角的大小為____________________.14.已知實數(shù)滿足約束條件,若目標函數(shù)僅在點處取得最小值,則的取值范圍是__________.15.若實數(shù)滿足,則取值范圍是____________。16.已知等差數(shù)列的公差為2,若成等比數(shù)列,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設平面向量,,函數(shù).(Ⅰ)求時,函數(shù)的單調遞增區(qū)間;(Ⅱ)若銳角滿足,求的值.18.已知是同一平面內的三個向量,其中為單位向量.(Ⅰ)若//,求的坐標;(Ⅱ)若與垂直,求與的夾角.19.設函數(shù).(1)求;(2)求函數(shù)在區(qū)間上的值域.20.已知數(shù)列的前項和,且,數(shù)列滿足:對于任意,有.(1)求數(shù)列的通項公式;(2)求數(shù)列的通項公式,若在數(shù)列的兩項之間都按照如下規(guī)則插入一些數(shù)后,構成新數(shù)列:和兩項之間插入個數(shù),使這個數(shù)構成等差數(shù)列,求;(3)若不等式成立的自然數(shù)恰有個,求正整數(shù)的值.21.已知數(shù)列的前項和為,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令,數(shù)列的前項和為,若不等式對任意恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】若平面α外的兩點所確定的直線與平面α平行,則過該直線與平面α平行的平面有且只有一個;若平面α外的兩點所確定的直線與平面α相交,則過該直線的平面與平面α平行的平面不存在;故選B.2、C【解析】因為等差數(shù)列{an}中,a2+a4=6,故a1+a5=6,所以S5===15.故選C.3、A【解析】

根據(jù)二次函數(shù)的性質求解.【詳解】不等式x2+ax+4>0對任意實數(shù)x恒成立,則,∴.故選A.【點睛】本題考查一元二次不等式恒成立問題,解題時可借助二次函數(shù)的圖象求解.4、B【解析】

通過函數(shù)圖像可計算出三角函數(shù)的周期,從而求得w,再代入一個最低點即可得到答案.【詳解】,,又,,,又,,故選B.【點睛】本題主要考查三角函數(shù)的圖像,通過周期求得w是解決此類問題的關鍵.5、A【解析】

根據(jù)復數(shù)除法運算求得,從而可得虛部.【詳解】由得:本題正確選項:【點睛】本題考查復數(shù)虛部的求解問題,關鍵是通過復數(shù)除法運算得到的形式.6、C【解析】

根據(jù)同角三角函數(shù)的基本關系及兩角和差的正弦公式計算可得.【詳解】解:因為,.因為,所以.因為,,所以.所以.故選:【點睛】本題考查同角三角函數(shù)的基本關系,兩角和差的正弦公式,屬于中檔題.7、A【解析】

根據(jù)等差數(shù)列性質;若,則即可?!驹斀狻恳驗闉榈炔顢?shù)列,所以,,所以選擇A【點睛】本題主要考查了等差數(shù)列比較重要的一個性質;在等差數(shù)列中若,則,屬于基礎題。8、D【解析】

利用正弦定理可將已知中的等號兩邊的“邊”轉化為它所對角的正弦,再利用余弦定理化簡即得該三角形的形狀.【詳解】根據(jù)正弦定理,原式可變形為:所以整理得.故選.【點睛】本題主要考查正弦定理余弦定理解三角形,意在考查學生對這些知識的理解掌握水平和分析推理能力.9、A【解析】

根據(jù)題中的程序語句,直接按照順序結構的功能即可求出。【詳解】由題意可得:,,,所以輸出為6,故選A.【點睛】本題主要考查順序結構的程序框圖的理解,理解語句的含義是解題關鍵。10、B【解析】

由已知知,所以B<A=,由正弦定理得,==,所以,故選B考點:正弦定理二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用誘導公式求解即可【詳解】,故答案為:【點睛】本題考查誘導公式,是基礎題12、9【解析】

兩圓只有一條公切線,可以判斷兩圓是內切關系,可以得到一個等式,結合這個等式,可以求出的最小值.【詳解】,圓心為,半徑為2;,圓心為,半徑為1.因為兩圓只有一條公切線,所以兩圓是內切關系,即,于是有(當且僅當取等號),因此的最小值為9.【點睛】本題考查了圓與圓的位置關系,考查了基本不等式的應用,考查了數(shù)學運算能力.13、【解析】本題考查了三角恒等變換、已知三角函數(shù)值求角以及正弦定理,考查了同學們解決三角形問題的能力.由得,所以由正弦定理得,所以A=或(舍去)、14、【解析】

利用數(shù)形結合,討論的范圍,比較斜率大小,可得結果.【詳解】如圖,當時,,則在點處取最小值,符合當時,令,要在點處取最小值,則當時,要在點處取最小值,則綜上所述:故答案為:【點睛】本題考查目標函數(shù)中含參數(shù)的線性規(guī)劃問題,難點在于尋找斜率之間的關系,屬中檔題.15、;【解析】

利用三角換元,設,;利用輔助角公式將化為,根據(jù)三角函數(shù)值域求得結果.【詳解】可設,,本題正確結果:【點睛】本題考查利用三角換元法求解取值范圍的問題,關鍵是能夠將問題轉化為三角函數(shù)值域的求解問題.16、【解析】

利用等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,求出a1,即可求出a1.【詳解】∵等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案為-2..【點睛】本題考查等比數(shù)列的性質,考查等差數(shù)列的通項,考查學生的計算能力,屬基礎題..三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用向量的數(shù)量積結合兩角和與差的三角函數(shù)化簡函數(shù)為一個角的一個三角函數(shù)的形式,利用正弦函數(shù)的單調增區(qū)間,求得時函數(shù)f(x)的單調遞增區(qū)間;(Ⅱ)若銳角α滿足,可得cos的值,然后求的值.【詳解】解:(Ⅰ).由得,其中單調遞增區(qū)間為,可得,∴時f(x)的單調遞增區(qū)間為.(Ⅱ),∵α為銳角,∴..【點睛】本題考查向量的數(shù)量積以及三角函數(shù)的化簡求值,考查了二倍角公式的應用,考查轉化思想以及計算能力,屬于中檔題.18、(Ⅰ)或(Ⅱ)【解析】

(Ⅰ)設,根據(jù)向量的模和共線向量的條件,列出方程組,即可求解.(Ⅱ)由,根據(jù)向量的運算求得,再利用向量的夾角公式,即可求解.【詳解】(Ⅰ)設由題則有解得或,.(Ⅱ)由題即,.【點睛】本題主要考查了向量的坐標運算,共線向量的條件及向量的夾角公式的應用,其中解答中熟記向量的基本概念和運算公式,合理準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.19、(1);(2).【解析】

(1)把直接帶入,或者先化簡(2)化簡得,,根據(jù)求出的范圍即可解決.【詳解】(1)因為,,所以;(2)當時,,所以,所以.【點睛】本題主要考查了三角函數(shù)的問題,對于三角函數(shù)需要記住常考的一些性質:圖像、周期、最值、單調性、對稱軸等.屬于中等題.20、(1);,;(3).【解析】

(1)令求出,然后令,由得出,兩式相減可得出數(shù)列是等比數(shù)列,確定該數(shù)列的首項和公比,即可求出數(shù)列的通項公式;(2)令可計算出,再令,由可得出,兩式相減求出,求出,再檢驗是否滿足的表達式,由此可得出數(shù)列的通項公式,求出,由,以及可得出的值;(3)化簡可得,分類討論,當、時,不等式成立,當時,,利用判斷數(shù)列的單調性,得出該數(shù)列的最大項,可知滿足不等式,且和不滿足該不等式,由此可得出實數(shù)的取值范圍,進而求出正整數(shù)的值.【詳解】(1)對任意的,.當時,,解得;當時,由得出,兩式相減得,化簡得,即,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,因此,;(2)對于任意,有.當時,,;當時,由,可得,上述兩式相減得,.適合上式,因此,.由于和兩項之間插入個數(shù),使得這個數(shù)成等差數(shù)列,這個數(shù)列的公差為.,且,所以,;(3)由,得.當、,該不等式顯然成立;當時,,由,得,設,,當時,,即當時,,即,則.所以,數(shù)列的最大項為,又,.由題意可中,滿足不等式,和不滿足不等式.,則,因此正整數(shù)的值為.【點睛】本題考查利用求數(shù)列的通項公式、等差數(shù)列定義的應用,同時也考查了數(shù)列不等式的求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論