版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省廣雅中學2024年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列滿足,則()A.10 B.20 C.100 D.2002.已知,那么()A. B. C. D.3.甲、乙兩人在相同條件下,射擊5次,命中環(huán)數(shù)如下:甲9.89.910.11010.2乙9.410.310.89.79.8根據(jù)以上數(shù)據(jù)估計()A.甲比乙的射擊技術(shù)穩(wěn)定 B.乙.比甲的射擊技術(shù)穩(wěn)定C.兩人沒有區(qū)別 D.兩人區(qū)別不大4.正四棱柱的高為3cm,體對角線長為cm,則正四棱柱的側(cè)面積為()A.10 B.24 C.36 D.405.正六邊形的邊長為,以頂點為起點,其他頂點為終點的向量分別為;以頂點為起點,其他頂點為終點的向量分別為.若分別為的最小值、最大值,其中,則下列對的描述正確的是()A. B. C. D.6.已知菱形的邊長為,則()A. B. C. D.7.已知向量,,則與夾角的大小為()A. B. C. D.8.已知點,,直線的方程為,且與線段相交,則直線的斜率的取值范圍為()A. B. C. D.9.函數(shù)是().A.周期為的偶函數(shù) B.周期為的奇函數(shù)C.周期為的偶函數(shù) D.周期為奇函數(shù)10.設變量,滿足約束條件則目標函數(shù)的最小值為()A.4 B.-5 C.-6 D.-8二、填空題:本大題共6小題,每小題5分,共30分。11.已知點P(tanα,cosα)在第三象限,則角α的終邊在第________象限.12.若正實數(shù)滿足,則的最小值為______.13.若,則______.14.設,用,表示所有形如的正整數(shù)集合,其中且,為集合中的所有元素之和,則的通項公式為_______15.設a>0,b>0,若是與3b的等比中項,則的最小值是__.16.將角度化為弧度:________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設,,.(1)若,求實數(shù)的值;(2)若,求實數(shù)的值.18.某校為創(chuàng)建“綠色校園”,在校園內(nèi)種植樹木,有A、B、C三種樹木可供選擇,已知這三種樹木6年內(nèi)的生長規(guī)律如下:A樹木:種植前樹木高0.84米,第一年能長高0.1米,以后每年比上一年多長高0.2米;B樹木:種植前樹木高0.84米,第一年能長高0.04米,以后每年生長的高度是上一年生長高度的2倍;C樹木:樹木的高度(單位:米)與生長年限(單位:年,)滿足如下函數(shù):(表示種植前樹木的高度,?。?)若要求6年內(nèi)樹木的高度超過5米,你會選擇哪種樹木?為什么?(2)若選C樹木,從種植起的6年內(nèi),第幾年內(nèi)生長最快?19.已知向量.(I)當實數(shù)為何值時,向量與共線?(II)若向量,且三點共線,求實數(shù)的值.20.如圖,四棱錐中,,平面平面,,為的中點.(1)求證://平面;(2)求點到面的距離(3)求二面角平面角的正弦值21.設函數(shù).(1)若,解不等式;(2)若對一切實數(shù),恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由題可得數(shù)列是以為首相,為公差的等差數(shù)列,求出數(shù)列的通項公式,進而求出【詳解】因為,所以數(shù)列是以為首項,為公差的等差數(shù)列,所以,則【點睛】本題考查由遞推公式證明數(shù)列是等差數(shù)列以及等差數(shù)列的通項公式,屬于一般題.2、A【解析】依題意有,故3、A【解析】
先計算甲、乙兩人射擊5次,命中環(huán)數(shù)的平均數(shù),再計算出各自的方差,根據(jù)方差的數(shù)值的比較,得出正確的答案.【詳解】甲、乙兩人射擊5次,命中環(huán)數(shù)的平均數(shù)分別為:,甲、乙兩人射擊5次,命中環(huán)數(shù)的方差分別為:,,因為,所以甲比乙的射擊技術(shù)穩(wěn)定,故本題選A.【點睛】本題考查了用方差解決實際問題的能力,考查了方差的統(tǒng)計學意義.4、B【解析】
設正四棱柱,設底面邊長為,由正四棱柱體對角線的平方等于從同一頂點出發(fā)的三條棱的平方和,可得關(guān)于的方程.【詳解】如圖,正四棱柱,設底面邊長為,則,解得:,所以正四棱柱的側(cè)面積.【點睛】本題考查正棱柱的概念,即底面為正方形且側(cè)棱垂直于底面的幾何體,考查幾何體的側(cè)面積計算.5、A【解析】
利用向量的數(shù)量積公式,可知只有,其余數(shù)量積均小于等于0,從而得到結(jié)論.【詳解】由題意,以頂點A為起點,其他頂點為終點的向量分別為,以頂點D為起點,其他頂點為終點的向量分別為,則利用向量的數(shù)量積公式,可知只有,其余數(shù)量積均小于等于0,又因為分別為的最小值、最大值,所以,故選A.【點睛】本題主要考查了向量的數(shù)量積運算,其中解答中熟記向量的數(shù)量積的運算公式,分析出向量數(shù)量積的正負是關(guān)鍵,著重考查了分析解決問題的能力,屬于中檔試題.6、D【解析】
由菱形可直接得出所求兩向量的模長及夾角,直接利用向量數(shù)量積公式即可.【詳解】由菱形的性質(zhì)可以得出:所以選擇D【點睛】直接考查向量數(shù)量積公式,屬于簡單題7、D【解析】
根據(jù)向量,的坐標及向量夾角公式,即可求出,從而根據(jù)向量夾角的范圍即可求出夾角.【詳解】向量,,則;∴;∵0≤<a,b>≤π;∴<a,b>=.故選:D.【點睛】本題考查數(shù)量積表示兩個向量的夾角,已知向量坐標代入夾角公式即可求解,屬于??碱}型,屬于簡單題.8、A【解析】
直線過定點,利用直線的斜率公式分別計算出直線,和的斜率,根據(jù)斜率的單調(diào)性即可求斜率的取值范圍.【詳解】解:直線整理為即可知道直線過定點,作出直線和點對應的圖象如圖:,,,,,要使直線與線段相交,則直線的斜率滿足或,或即直線的斜率的取值范圍是,故選.【點睛】本題考查直線斜率的求法,利用數(shù)形結(jié)合確定直線斜率的取值范圍,屬于基礎題.9、B【解析】因,故是奇函數(shù),且最小正周期是,即,應選答案B.點睛:解答本題時充分運用題設條件,先借助二倍角的余弦公式的變形,將函數(shù)的形式進行化簡,然后再驗證函數(shù)的奇偶性與周期性,從而獲得問題的答案.10、D【解析】繪制不等式組所表示的平面區(qū)域,結(jié)合目標函數(shù)的幾何意義可知,目標函數(shù)在點處取得最小值.本題選擇D選項.二、填空題:本大題共6小題,每小題5分,共30分。11、二【解析】
由點P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,從而得到α所在的象限.【詳解】因為點P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,則角α的終邊在第二象限,故答案為二.點評:本題考查第三象限內(nèi)的點的坐標的符號,以及三角函數(shù)在各個象限內(nèi)的符號.12、【解析】
由得,將轉(zhuǎn)化為,整理,利用基本不等式即可求解。【詳解】因為,所以.所以當且僅當,即:時,等號成立。所以的最小值為.【點睛】本題主要考查了構(gòu)造法及轉(zhuǎn)化思想,考查基本不等式的應用及計算能力,屬于基礎題。13、【解析】
,則,故答案為.14、【解析】
把集合中每個數(shù)都表示為2的0到的指數(shù)冪相加的形式,并確定,,,,每個數(shù)都出現(xiàn)次,于是利用等比數(shù)列求和公式計算,可求出數(shù)列的通項公式.【詳解】由題意可知,,,,是0,1,2,,的一個排列,且集合中共有個數(shù),若把集合中每個數(shù)表示為的形式,則,,,,每個數(shù)都出現(xiàn)次,因此,,故答案為:.【點睛】本題以數(shù)列新定義為問題背景,考查等比數(shù)列的求和公式,考查學生的理解能力與計算能力,屬于中等題.15、【解析】由已知,是與的等比中項,則則,當且僅當時等號成立故答案為2【點睛】本題考查基本不等式的性質(zhì)、等比數(shù)列的性質(zhì),其中熟練應用“乘1法”是解題的關(guān)鍵.16、【解析】
根據(jù)角度和弧度的互化公式求解即可.【詳解】.故答案為:.【點睛】本題考查角度和弧度的互化公式,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由向量加法的坐標運算可得:,再由向量平行的坐標運算即可得解.(2)由向量垂直的坐標運算即可得解.【詳解】解:(1),,,,,故,所以.(2),,,所以.【點睛】本題考查了向量加法的坐標運算、向量平行和垂直的坐標運算,屬基礎題.18、(1)選擇C;(2)第4或第5年.【解析】
(1)根據(jù)已知求出三種樹木六年末的高度,判斷得解;(2)設為第年內(nèi)樹木生長的高度,先求出,設,則,.再利用分析函數(shù)的單調(diào)性,分析函數(shù)的圖像得解.【詳解】(1)由題意可知,A、B、C三種樹木隨著時間的增加,高度也在增加,6年末:A樹木的高度為(米):B樹木的高度為(米):C樹木的高度為(米),所以選擇C樹木.(2)設為第年內(nèi)樹木生長的高度,則,所以,,.設,則,.令,因為在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),所以當時,取得最小值,從而取得最大值,此時,解得,因為,,故的可能值為3或4,又,,即.因此,種植后第4或第5年內(nèi)該樹木生長最快.【點睛】本題主要考查等差數(shù)列和等比數(shù)列求和,考查函數(shù)的圖像和性質(zhì)的應用,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于難題.19、(1)(2)【解析】
(1)利用向量的運算法則、共線定理即可得出;(2)利用向量共線定理、平面向量基本定理即可得出.【詳解】(1)kk(1,0)﹣(2,1)=(k﹣2,﹣1).2(1,0)+2(2,1)=(5,2).∵k與2共線∴2(k﹣2)﹣(﹣1)×5=0,即2k﹣4+5=0,得k.(2)∵A、B、C三點共線,∴.∴存在實數(shù)λ,使得,又與不共線,∴,解得.【點睛】本題考查了向量的運算法則、共線定理、平面向量基本定理,屬于基礎題.20、(1)見詳解;(2);(3)【解析】
(1)通過取中點,利用中位線定理可得四變形為平行四邊形,然后利用線面平行的判定定理,可得結(jié)果.(2)根據(jù),可得平面,可得結(jié)果.(3)作,作,可得二面角平面角為,然后計算,可得結(jié)果.【詳解】(1)取中點,連接,如圖由為的中點,所以//且又,且,所以//且,故//且,所以四變形為平行四邊形,故//又平面,平面所以//平面(2)由,平面平面平面,平面平面所以平面,又平面所以,由,所以為正三角形,所以則平面所以平面,且所以點到面的距離即(3)作交于點,作交于點,連接由平面平面,平面平面平面平面,所以平面,平面,所以,又平面,所以平面又平面,所以所以二面角平面角為,又為等腰直角三角形所以,所以所以又二面角平面角為故所以二面角平面角的正弦值為【點睛】本題考查了線面平行的判定定理,還考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版機電設備安裝合同范本
- 2024版學校廢物管理承包合同3篇
- 2025年度電子元器件展參展商權(quán)益保障協(xié)議模板3篇
- 2025年度城市垃圾分類處理承包合同3篇
- 2025年度房屋租賃管理及押金合同4篇
- 二零二四平安普惠企業(yè)融資借款合同3篇
- 2025版路燈設施智能監(jiān)控系統(tǒng)建設合同4篇
- 2025年度高新技術(shù)產(chǎn)業(yè)園區(qū)廠房租賃合同補充協(xié)議3篇
- 2024離婚訴訟費用分擔及財產(chǎn)處理合同
- 2025年度旅游景區(qū)旅游安全風險評估與應急預案合同4篇
- 安徽省合肥市2021-2022學年七年級上學期期末數(shù)學試題(含答案)3
- 教育專家報告合集:年度得到:沈祖蕓全球教育報告(2023-2024)
- 肝臟腫瘤護理查房
- 護士工作壓力管理護理工作中的壓力應對策略
- 2023年日語考試:大學日語六級真題模擬匯編(共479題)
- 皮帶拆除安全技術(shù)措施
- ISO9001(2015版)質(zhì)量體系標準講解
- 《培訓資料緊固》課件
- 黑龍江省政府采購評標專家考試題
- 成品煙道安裝施工方案
- 醫(yī)療免責協(xié)議書范本
評論
0/150
提交評論