版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東省廉江市實(shí)驗(yàn)學(xué)校2024屆高一下數(shù)學(xué)期末考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.點(diǎn)到直線的距離是()A. B. C.3 D.2.設(shè)的內(nèi)角A,B,C所對的邊分別為a,b,c.若,,則角()A. B. C. D.3.已知角的終邊經(jīng)過點(diǎn),則=()A. B. C. D.4.設(shè)長方體的長、寬、高分別為2,1,1,其頂點(diǎn)都在同一個(gè)球面上,則該球的表面積為()A. B. C. D.5.已知等差數(shù)列的前項(xiàng)和為.且,則()A. B. C. D.6.表示不超過的最大整數(shù),設(shè)函數(shù),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.7.已知數(shù)列的前4項(xiàng)依次為,1,,,則該數(shù)列的一個(gè)通項(xiàng)公式可以是()A. B.C. D.8.在正方體中,為棱的中點(diǎn),則異面直線與所成角的余弦值為()A. B. C. D.9.已知非零實(shí)數(shù)a,b滿足,則下列不等關(guān)系一定成立的是()A. B. C. D.10.已知函數(shù)在區(qū)間(1,2)上是增函數(shù),則實(shí)數(shù)a的取值范圍是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)數(shù)列的前項(xiàng)和為滿足:,則_________.12.函數(shù)的初相是__________.13.將邊長為1的正方形中,把沿對角線AC折起到,使平面⊥平面ABC,則三棱錐的體積為________.14.一條河的兩岸平行,河的寬度為560m,一艘船從一岸出發(fā)到河對岸,已知船的靜水速度,水流速度,則行駛航程最短時(shí),所用時(shí)間是__________(精確到).15.若正四棱錐的側(cè)棱長為,側(cè)面與底面所成的角是45°,則該正四棱錐的體積是________.16.終邊在軸上的角的集合是_____________________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在等差數(shù)列中,,,等比數(shù)列中,,.(1)求數(shù)列,的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.18.已知數(shù)列的前項(xiàng)和為,點(diǎn)在直線上.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),若數(shù)列的前項(xiàng)和為,求證:.19.已知:(,為常數(shù)).(1)若,求的最小正周期;(2)若在,上最大值與最小值之和為3,求的值.20.如下圖,長方體ABCD-A1B1C1D1中,(1)當(dāng)點(diǎn)E在AB上移動(dòng)時(shí),三棱錐D-D(2)當(dāng)點(diǎn)E在AB上移動(dòng)時(shí),是否始終有D121.已知向量,.(1)當(dāng)為何值時(shí),與垂直?(2)若,,且三點(diǎn)共線,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
根據(jù)點(diǎn)到直線的距離求解即可.【詳解】點(diǎn)到直線的距離是.故選:D【點(diǎn)睛】本題主要考查了點(diǎn)到線的距離公式,屬于基礎(chǔ)題.2、B【解析】
根據(jù)正弦定理,可得,進(jìn)而可求,再利用余弦定理,即可得結(jié)果.【詳解】,∴由正弦定理,可得3b=5a,,,,,故選:B.【點(diǎn)睛】本題主要考查余弦定理及正弦定理的應(yīng)用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2).3、D【解析】試題分析:由題意可知x=-4,y=3,r=5,所以.故選D.考點(diǎn):三角函數(shù)的概念.4、B【解析】
先求出長方體的對角線的長度,即得外接球的直徑,再求球的表面積得解.【詳解】由題得長方體外接球的直徑.故選:B【點(diǎn)睛】本題主要考查長方體的外接球的表面積的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.5、C【解析】
根據(jù)等差數(shù)列性質(zhì)可知,求得,代入可求得結(jié)果.【詳解】本題正確選項(xiàng):【點(diǎn)睛】本題考查三角函數(shù)值的求解,關(guān)鍵是能夠靈活應(yīng)用等差數(shù)列下標(biāo)和的性質(zhì),屬于基礎(chǔ)題.6、D【解析】
由已知可證是奇函數(shù),是互為相反數(shù),對是否為正數(shù)分類討論,即可求解.【詳解】的定義域?yàn)椋?,是奇函數(shù),設(shè),若是整數(shù),則,若不是整數(shù),則.的值域是.故選:D.【點(diǎn)睛】本題考查函數(shù)性質(zhì)的應(yīng)用,考查對新函數(shù)定義的理解,考查分類討論思想,屬于中檔題.7、A【解析】
根據(jù)各選擇項(xiàng)求出數(shù)列的首項(xiàng),第二項(xiàng),用排除法確定.【詳解】可用排除法,由數(shù)列項(xiàng)的正負(fù)可排除B,D,再看項(xiàng)的絕對值,在C中不合題意,排除C,只有A.可選.故選:A.【點(diǎn)睛】本題考查數(shù)列的通項(xiàng)公式,已知數(shù)列的前幾項(xiàng),選擇一個(gè)通項(xiàng)公式,比較方便,可以利用通項(xiàng)公式求出數(shù)列的前幾項(xiàng),把不合的排除即得.8、D【解析】
利用,得出異面直線與所成的角為,然后在中利用銳角三角函數(shù)求出.【詳解】如下圖所示,設(shè)正方體的棱長為,四邊形為正方形,所以,,所以,異面直線與所成的角為,在正方體中,平面,平面,,,,,在中,,,因此,異面直線與所成角的余弦值為,故選D.【點(diǎn)睛】本題考查異面直線所成角的計(jì)算,一般利用平移直線,選擇合適的三角形,利用銳角三角函數(shù)或余弦定理求解,考查推理能力與計(jì)算能力,屬于中等題.9、D【解析】
根據(jù)不等式的基本性質(zhì),一一進(jìn)行判斷即可得出正確結(jié)果.【詳解】A.,取,顯然不成立,所以該選項(xiàng)錯(cuò)誤;B.,取,顯然不成立,所以該選項(xiàng)錯(cuò)誤;C.,取,顯然不成立,所以該選項(xiàng)錯(cuò)誤;D.,由已知且,所以,即.所以該選項(xiàng)正確.故選:.【點(diǎn)睛】本題考查不等式的基本性質(zhì),屬于容易題.10、C【解析】
由題意可得在上為減函數(shù),列出不等式組,由此解得的范圍.【詳解】∵函數(shù)在區(qū)間上是增函數(shù),∴函數(shù)在上為減函數(shù),其對稱軸為,∴可得,解得.故選:C.【點(diǎn)睛】本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用,求得關(guān)于的遞推關(guān)系式,利用配湊法證得是等比數(shù)列,由此求得數(shù)列的通項(xiàng)公式,進(jìn)而求得的表達(dá)式,從而求得的值.【詳解】當(dāng)時(shí),.由于,而,故,故答案為:.【點(diǎn)睛】本小題主要考查配湊法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.12、【解析】
根據(jù)函數(shù)的解析式即可求出函數(shù)的初相.【詳解】,初相為.故答案為:【點(diǎn)睛】本題主要考查的物理意義,屬于簡單題.13、【解析】
由面面垂直的性質(zhì)定理可得面,再結(jié)合三棱錐的體積的求法求解即可.【詳解】解:取中點(diǎn),連接,因?yàn)樗倪呅螢檫呴L為1的正方形,則,即,又平面⊥平面ABC,由面面垂直的性質(zhì)定理可得:面,且,則,故答案為:.【點(diǎn)睛】本題考查了三棱錐的體積的求法,重點(diǎn)考查了面面垂直的性質(zhì)定理,屬中檔題.14、6【解析】
先確定船的方向,再求出船的速度和時(shí)間.【詳解】因?yàn)樾谐套疃蹋源瑧?yīng)該朝上游的方向行駛,所以船的速度為km/h,所以所用時(shí)間是.故答案為6【點(diǎn)睛】本題主要考查平面向量的應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.15、【解析】
過棱錐頂點(diǎn)作,平面,則為的中點(diǎn),為正方形的中心,連結(jié),設(shè)正四棱錐的底面長為,根據(jù)已知求出a=2,SO=1,再求該正四棱錐的體積.【詳解】過棱錐頂點(diǎn)作,平面,則為的中點(diǎn),為正方形的中心,連結(jié),則為側(cè)面與底面所成角的平面角,即,設(shè)正四棱錐的底面長為,則,所以,在中,∵∴,解得,∴∴棱錐的體積.故答案為【點(diǎn)睛】本題主要考查空間線面角的計(jì)算,考查棱錐體積的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.16、【解析】
由于終邊在y軸的非負(fù)半軸上的角的集合為而終邊在y軸的非正半軸上的角的集合為,終邊在軸上的角的集合是,所以,故答案為.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)根據(jù)等差數(shù)列的通項(xiàng)公式求出首項(xiàng),公差和等比數(shù)列的通項(xiàng)公式求出首項(xiàng),公比即可.
(2)由用錯(cuò)位相減法求和.【詳解】(1)在等差數(shù)列中,設(shè)首項(xiàng)為,公差為.由,有,解得:所以又設(shè)的公比為,由,,得所以.(2)…………………①……………②由①-②得所以【點(diǎn)睛】本題考查求等差、等比數(shù)列的通項(xiàng)公式和用錯(cuò)位相減法求和,屬于中檔題.18、(1)(2)見解析【解析】
(1)先利用時(shí),由求出的值,再令,由,得出,將兩式相減得出數(shù)列為等比數(shù)列,得出該數(shù)列的公比,可求出;(2)利用對數(shù)的運(yùn)算性質(zhì)以及等差數(shù)列的求和公式得出,并將裂項(xiàng)為,利用裂項(xiàng)法求出,于此可證明出所證不等式成立.【詳解】(1)由題可得.當(dāng)時(shí),,即.由題設(shè),,兩式相減得.所以是以2為首項(xiàng),2為公比的等比數(shù)列,故.(2),則,所以因?yàn)?,所以,即證.【點(diǎn)睛】本題考查利用求通項(xiàng),以及裂項(xiàng)法求和,利用求通項(xiàng)的原則是,另外在利用裂項(xiàng)法求和時(shí)要注意裂項(xiàng)法求和法所適用數(shù)列通項(xiàng)的基本類型,熟悉裂項(xiàng)法求和的基本步驟,都是常考題型,屬于中等題.19、(1);(2)1【解析】
(1)利用二倍角和輔助角公式化簡,即可求出最小正周期;(2)根據(jù)在,上,求解內(nèi)層函數(shù)范圍,即可求解最值,由最大值與最小值之和為3,求的值.【詳解】解:,(1)的最小正周期;(2),,當(dāng)時(shí),即,取得最小值為,當(dāng)時(shí),即,取得最大值為,最大值與最小值之和為3,,,故的值為1.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)和圖象的應(yīng)用,屬于基礎(chǔ)題.20、(1)13【解析】(I)三棱錐D-D∵∴V(II)當(dāng)點(diǎn)E在AB上移動(dòng)時(shí),始終有D1證明:連接AD1,∵四邊形∴A1∵AE⊥平面ADD1A1,∴A1又AB∩AD1=A,AB?∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科貿(mào)職業(yè)學(xué)院《信號檢測與估計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東交通職業(yè)技術(shù)學(xué)院《鋼筋混凝土結(jié)構(gòu)設(shè)計(jì)原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東技術(shù)師范大學(xué)《生物化學(xué)及實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東海洋大學(xué)《平面鋼筋識圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工商職業(yè)技術(shù)大學(xué)《空間設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東潮州衛(wèi)生健康職業(yè)學(xué)院《化工制圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 品德假期安全生活課件
- 小學(xué)生竇娥的課件
- 廣安職業(yè)技術(shù)學(xué)院《英語(二)》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛州職業(yè)技術(shù)學(xué)院《組織行為學(xué)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年時(shí)事政治試題【有答案】
- 2024年信息系統(tǒng)項(xiàng)目管理師(綜合知識、案例分析、論文)合卷軟件資格考試(高級)試題與參考答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識
- MT 285-1992縫管錨桿
- GB 18613-2020 電動(dòng)機(jī)能效限定值及能效等級
- 沉井工程檢驗(yàn)批全套【精選文檔】
- 貝類增養(yǎng)殖考試資料
- 旅游專業(yè)旅游概論試題有答案
- 3、起重工、焊工、電工安全技術(shù)交底
- 水稻幼穗分化八個(gè)時(shí)期的劃分表
- 卡特彼勒生產(chǎn)體系手冊(PDF62頁)
評論
0/150
提交評論