版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022年浙江溫州第四中學中考數(shù)學模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.圖為一根圓柱形的空心鋼管,它的主視圖是()A. B. C. D.2.下列哪一個是假命題()A.五邊形外角和為360°B.切線垂直于經(jīng)過切點的半徑C.(3,﹣2)關于y軸的對稱點為(﹣3,2)D.拋物線y=x2﹣4x+2017對稱軸為直線x=23.是兩個連續(xù)整數(shù),若,則分別是().A.2,3 B.3,2 C.3,4 D.6,84.下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B.C. D.5.如圖,平行四邊形ABCD的周長為12,∠A=60°,設邊AB的長為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數(shù)關系的圖象大致是()A. B. C. D.6.對于不等式組,下列說法正確的是()A.此不等式組的正整數(shù)解為1,2,3B.此不等式組的解集為C.此不等式組有5個整數(shù)解D.此不等式組無解7.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學記數(shù)法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣68.如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點B,C作BE⊥AG于點E,CF⊥AG于點F,則AE-GF的值為()A.1 B.2 C.32 D.9.如圖,O為原點,點A的坐標為(3,0),點B的坐標為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為()A. B. C. D.10.研究表明某流感病毒細胞的直徑約為0.00000156m,用科學記數(shù)法表示這個數(shù)是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×10611.某品牌的飲水機接通電源就進入自動程序:開機加熱到水溫100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關系,直至水溫降至30℃,飲水機關機.飲水機關機后即刻自動開機,重復上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間x(min)的關系如圖所示,水溫從100℃降到35℃所用的時間是()A.27分鐘 B.20分鐘 C.13分鐘 D.7分鐘12.生物興趣小組的學生,將自己收集的標本向本組其他成員各贈送一件,全組共互贈了132件.如果全組共有x名同學,則根據(jù)題意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132× D.x(x-1)=132×2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.三角形的每條邊的長都是方程的根,則三角形的周長是.14.計算:7+(-5)=______.15.若關于的一元二次方程(m-1)x2-4x+1=0有兩個不相等的實數(shù)根,則m的取值范圍為_____________.16.大自然是美的設計師,即使是一片小小的樹葉,也蘊含著“黃金分割”,如圖,P為AB的黃金分割點(AP>PB),如果AB的長度為10cm,那么PB的長度為__________cm.17.若圓錐的地面半徑為,側面積為,則圓錐的母線是__________.18.如圖,C為半圓內(nèi)一點,O為圓心,直徑AB長為1cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉至△B′OC′,點C′在OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為_________cm1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)張老師在黑板上布置了一道題:計算:2(x+1)2﹣(4x﹣5),求當x=和x=﹣時的值.小亮和小新展開了下面的討論,你認為他們兩人誰說的對?并說明理由.20.(6分)在平面直角坐標系中,函數(shù)()的圖象經(jīng)過點(4,1),直線與圖象交于點,與軸交于點.求的值;橫、縱坐標都是整數(shù)的點叫做整點.記圖象在點,之間的部分與線段,,圍成的區(qū)域(不含邊界)為.①當時,直接寫出區(qū)域內(nèi)的整點個數(shù);②若區(qū)域內(nèi)恰有4個整點,結合函數(shù)圖象,求的取值范圍.21.(6分)如圖,圓O是的外接圓,AE平分交圓O于點E,交BC于點D,過點E作直線.(1)判斷直線l與圓O的關系,并說明理由;(2)若的平分線BF交AD于點F,求證:;(3)在(2)的條件下,若,,求AF的長.22.(8分)如圖,拋物線y=x2+bx+c與x軸交于點A(﹣1,0),B(4,0)與y軸交于點C,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線1,交拋物線與點Q.求拋物線的解析式;當點P在線段OB上運動時,直線1交BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;在點P運動的過程中,坐標平面內(nèi)是否存在點Q,使△BDQ是以BD為直角邊的直角三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.23.(8分)某校七年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個主題中選擇一個,七年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調(diào)查,根據(jù)調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖.(1)將上面的條形統(tǒng)計圖補充完整;(2)在扇形統(tǒng)計圖中,選擇“愛國”主題所對應的圓心角是多少度?(3)如果該校七年級共有1200名考生,請估計選擇以“友善”為主題的七年級學生有多少名?24.(10分)已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,AF∥CE,且交BC于點F.求證:△ABF≌△CDE;如圖,若∠1=65°,求∠B的大小.25.(10分)如圖,在中,,是角平分線,平分交于點,經(jīng)過兩點的交于點,交于點,恰為的直徑.求證:與相切;當時,求的半徑.26.(12分)某漁業(yè)養(yǎng)殖場,對每天打撈上來的魚,一部分由工人運到集貿(mào)市場按10元/斤銷售,剩下的全部按3元/斤的購銷合同直接包銷給外面的某公司:養(yǎng)殖場共有30名工人,每名工人只能參與打撈與到集貿(mào)市場銷售中的一項工作,且每人每天可以打撈魚100斤或銷售魚50斤,設安排x名員工負責打撈,剩下的負責到市場銷售.(1)若養(yǎng)殖場一天的總銷售收入為y元,求y與x的函數(shù)關系式;(2)若合同要求每天銷售給外面某公司的魚至少200斤,在遵守合同的前提下,問如何分配工人,才能使一天的銷售收入最大?并求出最大值.27.(12分)在平面直角坐標系xOy中,拋物線y=mx2﹣2mx﹣3(m≠0)與x軸交于A(3,0),B兩點.(1)求拋物線的表達式及點B的坐標;(2)當﹣2<x<3時的函數(shù)圖象記為G,求此時函數(shù)y的取值范圍;(3)在(2)的條件下,將圖象G在x軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個新圖象M.若經(jīng)過點C(4.2)的直線y=kx+b(k≠0)與圖象M在第三象限內(nèi)有兩個公共點,結合圖象求b的取值范圍.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:從正面看是三個矩形,中間矩形的左右兩邊是虛線,故選B.2、C【解析】分析:根據(jù)每個選項所涉及的數(shù)學知識進行分析判斷即可.詳解:A選項中,“五邊形的外角和為360°”是真命題,故不能選A;B選項中,“切線垂直于經(jīng)過切點的半徑”是真命題,故不能選B;C選項中,因為點(3,-2)關于y軸的對稱點的坐標是(-3,-2),所以該選項中的命題是假命題,所以可以選C;D選項中,“拋物線y=x2﹣4x+2017對稱軸為直線x=2”是真命題,所以不能選D.故選C.點睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質;(3)點P(a,b)關于y軸的對稱點為(-a,b);(4)拋物線的對稱軸是直線:等數(shù)學知識,是正確解答本題的關鍵.3、A【解析】
根據(jù),可得答案.【詳解】根據(jù)題意,可知,可得a=2,b=1.故選A.【點睛】本題考查了估算無理數(shù)的大小,明確是解題關鍵.4、A【解析】分析:根據(jù)中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,即可判斷出答案.詳解:A、此圖形是中心對稱圖形,不是軸對稱圖形,故此選項正確;B、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;C、此圖形是中心對稱圖形,也是軸對稱圖形,故此選項錯誤;D、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤.故選A.點睛:此題主要考查了中心對稱圖形與軸對稱的定義,關鍵是找出圖形的對稱中心與對稱軸.5、C【解析】
過點B作BE⊥AD于E,構建直角△ABE,通過解該直角三角形求得BE的長度,然后利用平行四邊形的面積公式列出函數(shù)關系式,結合函數(shù)關系式找到對應的圖像.【詳解】如圖,過點B作BE⊥AD于E.∵∠A=60°,設AB邊的長為x,∴BE=AB?sin60°=x.∵平行四邊形ABCD的周長為12,∴AB=(12-2x)=6-x,∴y=AD?BE=(6-x)×x=﹣(0≤x≤6).則該函數(shù)圖像是一開口向下的拋物線的一部分,觀察選項,C符合題意.故選C.【點睛】本題考查了二次函數(shù)的圖像,根據(jù)題意求出正確的函數(shù)關系式是解題的關鍵.6、A【解析】解:,解①得x≤,解②得x>﹣1,所以不等式組的解集為﹣1<x≤,所以不等式組的整數(shù)解為1,2,1.故選A.點睛:本題考查了一元一次不等式組的整數(shù)解:利用數(shù)軸確定不等式組的解(整數(shù)解).解決此類問題的關鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進而求得不等式組的整數(shù)解.7、D【解析】
根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).【詳解】解:0.0000025第一個有效數(shù)字前有6個0(含小數(shù)點前的1個0),從而.故選D.8、D【解析】
設AE=x,則AB=2x,由矩形的性質得出∠BAD=∠D=90°,CD=AB,證明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出結果.【詳解】設AE=x,
∵四邊形ABCD是矩形,
∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22CG=x-∴AE-GF=x-(x-22)=2故選D.【點睛】本題考查了矩形的性質、等腰直角三角形的判定與性質,勾股定理;熟練掌握矩形的性質和等腰直角三角形的性質,并能進行推理計算是解決問題的關鍵.9、D【解析】
如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.10、C【解析】解:,故選C.11、C【解析】
先利用待定系數(shù)法求函數(shù)解析式,然后將y=35代入,從而求解.【詳解】解:設反比例函數(shù)關系式為:,將(7,100)代入,得k=700,∴,將y=35代入,解得;∴水溫從100℃降到35℃所用的時間是:20-7=13,故選C.【點睛】本題考查反比例函數(shù)的應用,利用數(shù)形結合思想解題是關鍵.12、B【解析】全組有x名同學,則每名同學所贈的標本為:(x-1)件,那么x名同學共贈:x(x-1)件,所以,x(x-1)=132,故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、6或2或12【解析】
首先用因式分解法求得方程的根,再根據(jù)三角形的每條邊的長都是方程的根,進行分情況計算.【詳解】由方程,得=2或1.當三角形的三邊是2,2,2時,則周長是6;當三角形的三邊是1,1,1時,則周長是12;當三角形的三邊長是2,2,1時,2+2=1,不符合三角形的三邊關系,應舍去;當三角形的三邊是1,1,2時,則三角形的周長是1+1+2=2.綜上所述此三角形的周長是6或12或2.14、2【解析】
根據(jù)有理數(shù)的加法法則計算即可.【詳解】.故答案為:2.【點睛】本題考查有理數(shù)的加法計算,熟練掌握加法法則是關鍵.15、且【解析】試題解析:∵一元二次方程有兩個不相等的實數(shù)根,∴m?1≠0且△=16?4(m?1)>0,解得m<5且m≠1,∴m的取值范圍為m<5且m≠1.故答案為:m<5且m≠1.點睛:一元二次方程方程有兩個不相等的實數(shù)根時:16、(15﹣5)【解析】
先利用黃金分割的定義計算出AP,然后計算AB-AP即得到PB的長.【詳解】∵P為AB的黃金分割點(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案為(15﹣5).【點睛】本題考查了黃金分割:把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(即AB:AC=AC:BC),叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點.其中AC=AB.17、13【解析】試題解析:圓錐的側面積=×底面半徑×母線長,把相應數(shù)值代入即可求解.設母線長為R,則:解得:故答案為13.18、【解析】
根據(jù)直角三角形的性質求出OC、BC,根據(jù)扇形面積公式計算即可.【詳解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1則邊BC掃過區(qū)域的面積為:故答案為.【點睛】考核知識點:扇形面積計算.熟記公式是關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、小亮說的對,理由見解析【解析】
先根據(jù)完全平方公式和去括號法則計算,再合并同類項,最后代入計算即可求解.【詳解】2(x+1)2﹣(4x﹣5)=2x2+4x+2﹣4x+5,=2x2+7,當x=時,原式=+7=7;當x=﹣時,原式=+7=7.故小亮說的對.【點睛】本題考查完全平方公式和去括號,解題的關鍵是明確完全平方公式和去括號的計算方法.20、(1)4;(2)①3個.(1,0),(2,0),(3,0).②或.【解析】分析:(1)根據(jù)點(4,1)在()的圖象上,即可求出的值;(2)①當時,根據(jù)整點的概念,直接寫出區(qū)域內(nèi)的整點個數(shù)即可.②分.當直線過(4,0)時,.當直線過(5,0)時,.當直線過(1,2)時,.當直線過(1,3)時四種情況進行討論即可.詳解:(1)解:∵點(4,1)在()的圖象上.∴,∴.(2)①3個.(1,0),(2,0),(3,0).②.當直線過(4,0)時:,解得.當直線過(5,0)時:,解得.當直線過(1,2)時:,解得.當直線過(1,3)時:,解得∴綜上所述:或.點睛:屬于反比例函數(shù)和一次函數(shù)的綜合題,考查待定系數(shù)法求反比例函數(shù)解析式,一次函數(shù)的圖象與性質,掌握整點的概念是解題的關鍵,注意分類討論思想在解題中的應用.21、(1)直線l與相切,見解析;(2)見解析;(3)AF=.【解析】
連接由題意可證明,于是得到,由等腰三角形三線合一的性質可證明,于是可證明,故此可證明直線l與相切;先由角平分線的定義可知,然后再證明,于是可得到,最后依據(jù)等角對等邊證明即可;先求得BE的長,然后證明∽,由相似三角形的性質可求得AE的長,于是可得到AF的長.【詳解】直線l與相切.理由:如圖1所示:連接OE.平分,.,.,.直線l與相切.平分,.又,.又,..由得.,,∽.,即,解得;..故答案為:(1)直線l與相切,見解析;(2)見解析;(3)AF=.【點睛】本題主要考查的是圓的性質、相似三角形的性質和判定、等腰三角形的性質、三角形外角的性質、切線的判定,證得是解題的關鍵.22、(1);(2)當m=2時,四邊形CQMD為平行四邊形;(3)Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2)【解析】
(1)直接將A(-1,0),B(4,0)代入拋物線y=x2+bx+c方程即可;
(2)由(1)中的解析式得出點C的坐標C(0,-2),從而得出點D(0,2),求出直線BD:y=?x+2,設點M(m,?m+2),Q(m,m2?m?2),可得MQ=?m2+m+4,根據(jù)平行四邊形的性質可得QM=CD=4,即?m2+m+4=4可解得m=2;
(3)由Q是以BD為直角邊的直角三角形,所以分兩種情況討論,①當∠BDQ=90°時,則BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),②當∠DBQ=90°時,則BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2).【詳解】(1)由題意知,∵點A(﹣1,0),B(4,0)在拋物線y=x2+bx+c上,∴解得:∴所求拋物線的解析式為(2)由(1)知拋物線的解析式為,令x=0,得y=﹣2∴點C的坐標為C(0,﹣2)∵點D與點C關于x軸對稱∴點D的坐標為D(0,2)設直線BD的解析式為:y=kx+2且B(4,0)∴0=4k+2,解得:∴直線BD的解析式為:∵點P的坐標為(m,0),過點P作x軸的垂線1,交BD于點M,交拋物線與點Q∴可設點M,Q∴MQ=∵四邊形CQMD是平行四邊形∴QM=CD=4,即=4解得:m1=2,m2=0(舍去)∴當m=2時,四邊形CQMD為平行四邊形(3)由題意,可設點Q且B(4,0)、D(0,2)∴BQ2=DQ2=BD2=20①當∠BDQ=90°時,則BD2+DQ2=BQ2,∴解得:m1=8,m2=﹣1,此時Q1(8,18),Q2(﹣1,0)②當∠DBQ=90°時,則BD2+BQ2=DQ2,∴解得:m3=3,m4=4,(舍去)此時Q3(3,﹣2)∴滿足條件的點Q的坐標有三個,分別為:Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2).【點睛】此題考查了待定系數(shù)法求解析式,還考查了平行四邊形及直角三角形的定義,要注意第3問分兩種情形求解.23、(1)條形統(tǒng)計圖如圖所示,見解析;(2)選擇“愛國”主題所對應的圓心角是144°;(3)估計選擇以“友善”為主題的七年級學生有360名.【解析】
(1)根據(jù)誠信的人數(shù)和所占的百分比求出抽取的總人數(shù),用總人數(shù)乘以友善所占的百分比,即可補全統(tǒng)計圖;(2)用360°乘以愛國所占的百分比,即可求出圓心角的度數(shù);(3)用該校七年級的總人數(shù)乘以“友善”所占的百分比,即可得出答案.【詳解】解:(1)本次調(diào)查共抽取的學生有(名)選擇“友善”的人數(shù)有(名)∴條形統(tǒng)計圖如圖所示:(2)∵選擇“愛國”主題所對應的百分比為,∴選擇“愛國”主題所對應的圓心角是;(3)該校七年級共有1200名學生,估計選擇以“友善”為主題的七年級學生有名.故答案為:(1)條形統(tǒng)計圖如圖所示,見解析;(2)選擇“愛國”主題所對應的圓心角是144°;(3)估計選擇以“友善”為主題的七年級學生有360名.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.24、(1)證明見解析;(2)50°.【解析】試題分析:(1)由平行四邊形的性質得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,證出∠AFB=∠1,由AAS證明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四邊形的性質和三角形內(nèi)角和定理即可得出結果.試題解析:(1)∵四邊形ABCD是平行四邊形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考點:(1)平行四邊形的性質;(2)全等三角形的判定與性質.25、(1)證明見解析;(2).【解析】
(1)連接OM,證明OM∥BE,再結合等腰三角形的性質說明AE⊥BE,進而證明OM⊥AE;(2)結合已知求出AB,再證明△AOM∽△ABE,利用相似三角形的性質計算.【詳解】(1)連接OM,則OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵點M在圓O上,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=4,cosC=∴BE=2,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB==6,設⊙O的半徑為r,則AO=6-r,∵OM∥BC,∴△AOM∽△ABE,∴∴,∴,解得,∴的半徑為.【點睛】本題考查了切線的判定;等腰三角形的性質;相似三角形的判定與性質;解直角三角形等知識,綜合性較強,正確添加輔助線,熟練運用相關知識是解題的關鍵.26、(1)y=﹣50x+10500
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年婚禮攝影攝像行業(yè)信用評價體系合同3篇
- 電力線路施工合同范本
- 個人車位出租合同
- 2024年硒鼓項目可行性研究報告
- 2024年立體浮雕畫項目可行性研究報告
- 宣傳物料制作合同范本
- 2025版酒店跨界合作經(jīng)營協(xié)議書3篇
- 2025年度電子產(chǎn)品oem質量檢測合同范本共
- 2025至2030年中國橫編織機行業(yè)投資前景及策略咨詢研究報告
- 2024年中國氣體助焊劑市場調(diào)查研究報告
- 水運工程重大事故隱患清單
- 仿寫詩歌-鄉(xiāng)愁
- 三年級《稻草人》閱讀測試試題附答案
- 心理健康與職業(yè)生涯(第一章)課件
- 粵教版三年級勞動與技術全冊教案教學設計
- 越努力越幸運商務紅色工作匯報PPT模板
- (完整版)外科學名詞解釋【完整版】
- 永磁同步電機控制系統(tǒng)設計與仿真畢業(yè)論文
- 傳感器與檢測技術課后習題和答案(陳杰)
- 藏歷新年ppt模版課件
- 基于PLC的自動門控制系統(tǒng)
評論
0/150
提交評論