版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022屆山西省呂梁市興縣康寧中學(xué)中考數(shù)學(xué)模擬預(yù)測試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數(shù)為()A.30° B.40° C.50° D.60°2.計(jì)算6m3÷(-3m2)的結(jié)果是()A.-3m B.-2m C.2m D.3m3.如圖所示,點(diǎn)E在AC的延長線上,下列條件中能判斷AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°4.某品牌的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序:開機(jī)加熱到水溫100℃,停止加熱,水溫開始下降,此時(shí)水溫(℃)與開機(jī)后用時(shí)(min)成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間x(min)的關(guān)系如圖所示,水溫從100℃降到35℃所用的時(shí)間是()A.27分鐘 B.20分鐘 C.13分鐘 D.7分鐘5.習(xí)近平主席在2018年新年賀詞中指出,2017年,基本醫(yī)療保險(xiǎn)已經(jīng)覆蓋1350000000人.將1350000000用科學(xué)記數(shù)法表示為()A.135×107 B.1.35×109 C.13.5×108 D.1.35×10146.某大學(xué)生利用課余時(shí)間在網(wǎng)上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價(jià)x(元/件)之間的函數(shù)關(guān)系式為y=–4x+440,要獲得最大利潤,該商品的售價(jià)應(yīng)定為A.60元B.70元C.80元D.90元7.小明早上從家騎自行車去上學(xué),先走平路到達(dá)點(diǎn)A,再走上坡路到達(dá)點(diǎn)B,最后走下坡路到達(dá)學(xué)校,小明騎自行車所走的路程s(單位:千米)與他所用的時(shí)間t(單位:分鐘)的關(guān)系如圖所示,放學(xué)后,小明沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上學(xué)時(shí)一致,下列說法:①小明家距學(xué)校4千米;②小明上學(xué)所用的時(shí)間為12分鐘;③小明上坡的速度是0.5千米/分鐘;④小明放學(xué)回家所用時(shí)間為15分鐘.其中正確的個(gè)數(shù)是()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)8.如圖,點(diǎn)D在△ABC邊延長線上,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線EF∥BC,交∠BCA的平分線于點(diǎn)F,交∠BCA的外角平分線于E,當(dāng)點(diǎn)O在線段AC上移動(dòng)(不與點(diǎn)A,C重合)時(shí),下列結(jié)論不一定成立的是()A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四邊形AFCE是矩形9.下列計(jì)算正確的是()A.2m+3n=5mnB.m2?m3=m6C.m8÷m6=m2D.(﹣m)3=m310.如果關(guān)于x的方程沒有實(shí)數(shù)根,那么c在2、1、0、中取值是()A.; B.; C.; D..二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點(diǎn)E是弧AB上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),點(diǎn)F是弧BC上的一點(diǎn),連接OE,OF,分別與交AB,BC于點(diǎn)G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號都填上)12.已知:a(a+2)=1,則a2+=_____.13.拋物線向右平移1個(gè)單位,再向下平移2個(gè)單位所得拋物線是__________.14.如圖,甲、乙兩船同時(shí)從港口出發(fā),甲船以60海里/時(shí)的速度沿北偏東60°方向航行,乙船沿北偏西30°方向航行,半小時(shí)后甲船到達(dá)點(diǎn)C,乙船正好到達(dá)甲船正西方向的點(diǎn)B,則乙船的航程為______海里(結(jié)果保留根號).15.拋物線y=2x2+4向左平移2個(gè)單位長度,得到新拋物線的表達(dá)式為_____.16.若方程x2﹣2x﹣1=0的兩根分別為x1,x2,則x1+x2﹣x1x2的值為_____.三、解答題(共8題,共72分)17.(8分)頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過點(diǎn)C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對應(yīng)點(diǎn)F恰好落在y軸上時(shí),請直接寫出點(diǎn)P的坐標(biāo).18.(8分)小強(qiáng)的媽媽想在自家的院子里用竹籬笆圍一個(gè)面積為4平方米的矩形小花園,媽媽問九年級的小強(qiáng)至少需要幾米長的竹籬笆(不考慮接縫).小強(qiáng)根據(jù)他學(xué)習(xí)函數(shù)的經(jīng)驗(yàn)做了如下的探究.下面是小強(qiáng)的探究過程,請補(bǔ)充完整:建立函數(shù)模型:設(shè)矩形小花園的一邊長為x米,籬笆長為y米.則y關(guān)于x的函數(shù)表達(dá)式為________;列表(相關(guān)數(shù)據(jù)保留一位小數(shù)):根據(jù)函數(shù)的表達(dá)式,得到了x與y的幾組值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描點(diǎn)、畫函數(shù)圖象:如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn)畫出該函數(shù)的圖象;觀察分析、得出結(jié)論:根據(jù)以上信息可得,當(dāng)x=________時(shí),y有最小值.由此,小強(qiáng)確定籬笆長至少為________米.19.(8分)如圖,在?ABCD中,以點(diǎn)4為圓心,AB長為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于12(1)根據(jù)以上尺規(guī)作圖的過程,求證:四邊形ABEF是菱形;(2)若AB=2,AE=23,求∠BAD的大?。?0.(8分)為了提高中學(xué)生身體素質(zhì),學(xué)校開設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動(dòng),為了解學(xué)生對這四種體育活動(dòng)的喜歡情況,在全校隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的對象必須選擇而且只能在四種體育活動(dòng)中選擇一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫完整).這次調(diào)查中,一共調(diào)查了________名學(xué)生;請補(bǔ)全兩幅統(tǒng)計(jì)圖;若有3名喜歡跳繩的學(xué)生,1名喜歡足球的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動(dòng),欲從中選出2人擔(dān)任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率.21.(8分)為營造“安全出行”的良好交通氛圍,實(shí)時(shí)監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點(diǎn)C,橫桿DE∥AB,攝像頭EF⊥DE于點(diǎn)E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數(shù);求攝像頭下端點(diǎn)F到地面AB的距離.(精確到百分位)22.(10分)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點(diǎn)A(m,3)、B(–6,n),與x軸交于點(diǎn)C.(1)求一次函數(shù)y=kx+b的關(guān)系式;(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;(3)若點(diǎn)P在x軸上,且S△ACP=,求點(diǎn)P的坐標(biāo).23.(12分)已知:二次函數(shù)C1:y1=ax2+2ax+a﹣1(a≠0)把二次函數(shù)C1的表達(dá)式化成y=a(x﹣h)2+b(a≠0)的形式,并寫出頂點(diǎn)坐標(biāo);已知二次函數(shù)C1的圖象經(jīng)過點(diǎn)A(﹣3,1).①求a的值;②點(diǎn)B在二次函數(shù)C1的圖象上,點(diǎn)A,B關(guān)于對稱軸對稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個(gè)交點(diǎn),求k的取值范圍.24.先化簡:,再請你選擇一個(gè)合適的數(shù)作為x的值代入求值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題解析:∵AB∥CD,且∴在中,故選B.2、B【解析】
根據(jù)單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式計(jì)算,然后選取答案即可.【詳解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故選B.3、C【解析】
由平行線的判定定理可證得,選項(xiàng)A,B,D能證得AC∥BD,只有選項(xiàng)C能證得AB∥CD.注意掌握排除法在選擇題中的應(yīng)用.【詳解】A.∵∠3=∠A,本選項(xiàng)不能判斷AB∥CD,故A錯(cuò)誤;B.∵∠D=∠DCE,∴AC∥BD.本選項(xiàng)不能判斷AB∥CD,故B錯(cuò)誤;C.∵∠1=∠2,∴AB∥CD.本選項(xiàng)能判斷AB∥CD,故C正確;D.∵∠D+∠ACD=180°,∴AC∥BD.故本選項(xiàng)不能判斷AB∥CD,故D錯(cuò)誤.故選:C.【點(diǎn)睛】考查平行線的判定,掌握平行線的判定定理是解題的關(guān)鍵.4、C【解析】
先利用待定系數(shù)法求函數(shù)解析式,然后將y=35代入,從而求解.【詳解】解:設(shè)反比例函數(shù)關(guān)系式為:,將(7,100)代入,得k=700,∴,將y=35代入,解得;∴水溫從100℃降到35℃所用的時(shí)間是:20-7=13,故選C.【點(diǎn)睛】本題考查反比例函數(shù)的應(yīng)用,利用數(shù)形結(jié)合思想解題是關(guān)鍵.5、B【解析】
科學(xué)記數(shù)法的表示形式為a×的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】將1350000000用科學(xué)記數(shù)法表示為:1350000000=1.35×109,故選B.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值及n的值.6、C【解析】設(shè)銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當(dāng)x=80時(shí),w取得最大值,最大值為3600,即售價(jià)為80元/件時(shí),銷售該商品所獲利潤最大,故選C.7、C【解析】
從開始到A是平路,是1千米,用了3分鐘,則從學(xué)校到家門口走平路仍用3分鐘,根據(jù)圖象求得上坡(AB段)、下坡(B到學(xué)校段)的路程與速度,利用路程除以速度求得每段所用的時(shí)間,相加即可求解.【詳解】解:①小明家距學(xué)校4千米,正確;②小明上學(xué)所用的時(shí)間為12分鐘,正確;③小明上坡的速度是千米/分鐘,錯(cuò)誤;④小明放學(xué)回家所用時(shí)間為3+2+10=15分鐘,正確;故選:C.【點(diǎn)睛】本題考查利用函數(shù)的圖象解決實(shí)際問題,正確理解函數(shù)圖象橫縱坐標(biāo)表示的意義,理解問題的過程,就能夠通過圖象得到函數(shù)問題的相應(yīng)解決.需注意計(jì)算單位的統(tǒng)一.8、D【解析】
依據(jù)三角形外角性質(zhì),角平分線的定義,以及平行線的性質(zhì),即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,進(jìn)而得到結(jié)論.【詳解】解:∵∠ACD是△ABC的外角,∴∠ACD=∠BAC+∠B,∵CE平分∠DCA,∴∠ACD=2∠ACE,∴2∠ACE=∠BAC+∠B,故A選項(xiàng)正確;∵EF∥BC,CF平分∠BCA,∴∠BCF=∠CFE,∠BCF=∠ACF,∴∠ACF=∠EFC,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B選項(xiàng)正確;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=×180°=90°,故C選項(xiàng)正確;∵O不一定是AC的中點(diǎn),∴四邊形AECF不一定是平行四邊形,∴四邊形AFCE不一定是矩形,故D選項(xiàng)錯(cuò)誤,故選D.【點(diǎn)睛】本題考查三角形外角性質(zhì),角平分線的定義,以及平行線的性質(zhì).9、C【解析】
根據(jù)同底數(shù)冪的除法,底數(shù)不變指數(shù)相減;合并同類項(xiàng),系數(shù)相加字母和字母的指數(shù)不變;同底數(shù)冪的乘法,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相乘,對各選項(xiàng)計(jì)算后利用排除法求解.【詳解】解:A、2m與3n不是同類項(xiàng),不能合并,故錯(cuò)誤;B、m2?m3=m5,故錯(cuò)誤;C、正確;D、(-m)3=-m3,故錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查同底數(shù)冪的除法,合并同類項(xiàng),同底數(shù)冪的乘法,冪的乘方很容易混淆,一定要記準(zhǔn)法則才能做題.10、A【解析】分析:由方程根的情況,根據(jù)根的判別式可求得c的取值范圍,則可求得答案.詳解:∵關(guān)于x的方程x1+1x+c=0沒有實(shí)數(shù)根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故選A.點(diǎn)睛:本題主要考查了根的判別式,熟練掌握一元二次方程根的個(gè)數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、①②④【解析】
①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;
②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,,
∴△BOE≌△COF,
∴BE=CF,
∴,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯(cuò)誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設(shè)BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④【點(diǎn)睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計(jì)算,綜合性較強(qiáng).12、3【解析】
先根據(jù)a(a+2)=1得出a2=1-2a,再把a(bǔ)2=1-2a代入a2+進(jìn)行計(jì)算.【詳解】a(a+2)=1得出a2=1-2a,a2+1-2a+====3.【點(diǎn)睛】本題考查的是代數(shù)式求解,熟練掌握代入法是解題的關(guān)鍵.13、(或)【解析】
將拋物線化為頂點(diǎn)式,再按照“左加右減,上加下減”的規(guī)律平移即可.【詳解】解:化為頂點(diǎn)式得:,∴向右平移1個(gè)單位,再向下平移2個(gè)單位得:,化為一般式得:,故答案為:(或).【點(diǎn)睛】此題不僅考查了對圖象平移的理解,同時(shí)考查了學(xué)生將一般式轉(zhuǎn)化頂點(diǎn)式的能力.14、10海里.【解析】
本題可以求出甲船行進(jìn)的距離AC,根據(jù)三角函數(shù)就可以求出AB,即可求出乙船的路程.【詳解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/時(shí)的速度沿北偏東60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到達(dá)甲船正西方向的B點(diǎn),∴∠C=30°,∴AB=AC?tan30°=30×=10海里.答:乙船的路程為10海里.故答案為10海里.【點(diǎn)睛】本題主要考查的是解直角三角形的應(yīng)用-方向角問題及三角函數(shù)的定義,理解方向角的定義是解決本題的關(guān)鍵.15、y=2(x+2)2+1【解析】試題解析:∵二次函數(shù)解析式為y=2x2+1,∴頂點(diǎn)坐標(biāo)(0,1)向左平移2個(gè)單位得到的點(diǎn)是(-2,1),可設(shè)新函數(shù)的解析式為y=2(x-h)2+k,代入頂點(diǎn)坐標(biāo)得y=2(x+2)2+1,故答案為y=2(x+2)2+1.點(diǎn)睛:函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.16、1【解析】根據(jù)題意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案為1.三、解答題(共8題,共72分)17、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時(shí),S有最大值,最大值為;(3)存在,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【解析】
(1)將點(diǎn)E代入直線解析式中,可求出點(diǎn)C的坐標(biāo),將點(diǎn)C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點(diǎn)式,可求出點(diǎn)D的坐標(biāo),設(shè)直線BD的解析式,代入點(diǎn)B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點(diǎn)P的坐標(biāo),則點(diǎn)G的坐標(biāo)可表示,點(diǎn)H的坐標(biāo)可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點(diǎn)E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點(diǎn)B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點(diǎn)M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時(shí),S有最大值,最大值為.(3)存在,如圖所示,設(shè)點(diǎn)P的坐標(biāo)為(t,0),則點(diǎn)G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應(yīng)點(diǎn)為點(diǎn)F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時(shí),解得t1=0(舍),t2=4,此時(shí)點(diǎn)P(4,0).當(dāng)t2﹣t=﹣t時(shí),解得t1=0(舍),t2=,此時(shí)點(diǎn)P(,0).綜上,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【點(diǎn)睛】此題考查了待定系數(shù)法求函數(shù)解析式,點(diǎn)坐標(biāo)轉(zhuǎn)換為線段長度,幾何圖形與二次函數(shù)結(jié)合的問題,最后一問推出CG=HG為解題關(guān)鍵.18、見解析【解析】
根據(jù)題意:一邊為x米,面積為4,則另一邊為米,籬笆長為y=2(x)=2x,由x═()2+4可得當(dāng)x=2,y有最小值,則可求籬笆長.【詳解】根據(jù)題意:一邊為x米,面積為4,則另一邊為米,籬笆長為y=2(x)=2x∵x()2+()2=()2+4,∴x4,∴2x1,∴當(dāng)x=2時(shí),y有最小值為1,由此小強(qiáng)確定籬笆長至少為1米.故答案為:y=2x,2,1.【點(diǎn)睛】本題考查了反比例函數(shù)的應(yīng)用,完全平方公式的運(yùn)用,關(guān)鍵是熟練運(yùn)用完全平方公式.19、(1)見解析;(2)60°.【解析】
(1)先證明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可證明;(2)連結(jié)BF,交AE于G.根據(jù)菱形的性質(zhì)得出AB=2,AG=12AE=3【詳解】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四邊形ABEF是平行四邊形,∵AB=BE,∴四邊形ABEF是菱形;(2)連結(jié)BF,交AE于G.∵AB=AF=2,∴GA=AE=×2=,在Rt△AGB中,cos∠BAE==,∴∠BAG=30°,∴∠BAF=2∠BAG=60°,【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)與菱形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握平行四邊形的性質(zhì)與菱形的判定與性質(zhì).20、(1)200;(2)答案見解析;(3).【解析】
(1)由題意得:這次調(diào)查中,一共調(diào)查的學(xué)生數(shù)為:40÷20%=200(名);(2)根據(jù)題意可求得B占的百分比為:1-20%-30%-15%=35%,C的人數(shù)為:200×30%=60(名);則可補(bǔ)全統(tǒng)計(jì)圖;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與一人是喜歡跳繩、一人是喜歡足球的學(xué)生的情況,再利用概率公式即可求得答案.【詳解】解:(1)根據(jù)題意得:這次調(diào)查中,一共調(diào)查的學(xué)生數(shù)為:40÷20%=200(名);故答案為:200;(2)C組人數(shù):200-40-70-30=60(名)B組百分比:70÷200×100%=35%如圖(3)分別用A,B,C表示3名喜歡跳繩的學(xué)生,D表示1名喜歡足球的學(xué)生;
畫樹狀圖得:∵共有12種等可能的結(jié)果,一人是喜歡跳繩、一人是喜歡足球的學(xué)生的有6種情況,∴一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率為:.【點(diǎn)睛】此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)(2)6.03米【解析】
分析:延長ED,AM交于點(diǎn)P,由∠CDE=162°及三角形外角的性質(zhì)可得出結(jié)果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.詳解:(1)如圖,延長ED,AM交于點(diǎn)P,∵DE∥AB,∴,即∠MPD=90°∵∠CDE=162°∴(2)如圖,在Rt△PCD中,CD=3米,∴PC=米∵AC=5.5米,EF=0.4米,∴米答:攝像頭下端點(diǎn)F到地面AB的距離為6.03米.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用,解決此類問題要了解角之間的關(guān)系,找到已知和未知相關(guān)聯(lián)的的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過作高線或垂線構(gòu)造直角三角形.22、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】
(1)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、B的坐標(biāo),再利用待定系數(shù)法即可求出直線AB的解析式;(1)根據(jù)函數(shù)圖像判斷即可;(3)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出結(jié)論.【詳解】(1)∵點(diǎn)A(m,3),B(-6,n)在雙曲線y=上,∴m=1,n=-1,∴A(1,3),B(-6,-1).將(1,3),B(-6,-1)帶入y=kx+b,得:,解得,.∴直線的解析式為y=x+1.(1)由函數(shù)圖像可知,當(dāng)kx+b>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度搬家服務(wù)及專業(yè)拆裝合同樣本3篇
- 2024版建筑木材購銷合同范本2篇
- 2024年度抗菌地板磚研發(fā)、生產(chǎn)與市場推廣合同3篇
- 2024年度房屋拆遷補(bǔ)償協(xié)議:某政府部門與居民之間的協(xié)議3篇
- 2024年度土地承包經(jīng)營權(quán)租賃合同3篇
- 2024年標(biāo)準(zhǔn)版塔吊設(shè)備采購與銷售協(xié)議版B版
- 2024年度文化創(chuàng)意企業(yè)間品牌推廣無償借款合同3篇
- 2024年版職業(yè)任命詳細(xì)合同范本下載版B版
- 2024版二手裝載機(jī)買賣與運(yùn)輸配送合同3篇
- 2024年度健身俱樂部教練服務(wù)合同3篇
- 昆明理工大學(xué)《自然語言處理》2023-2024學(xué)年第一學(xué)期期末試卷
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 水利水電工程施工生涯發(fā)展展示
- 病房護(hù)理組長年終述職
- 仲愷農(nóng)業(yè)工程學(xué)院《C程序設(shè)計(jì)》2021-2022學(xué)年期末試卷
- 2024年世界職業(yè)院校技能大賽高職組“護(hù)理技能組”賽項(xiàng)參考試題庫(含答案)
- DB22T 397-2014 保健用品功能學(xué)評價(jià)程序與檢驗(yàn)方法
- GB/T 44815-2024激光器和激光相關(guān)設(shè)備激光束偏振特性測量方法
- 浙教版2023小學(xué)信息技術(shù)三年級上冊《進(jìn)入在線平臺》說課稿及反思
- 《房顫抗凝新進(jìn)展》課件
- 論文寫作講座模板
評論
0/150
提交評論