2023-2024學年陜西西安地區(qū)高一數(shù)學第二學期期末質(zhì)量檢測試題含解析_第1頁
2023-2024學年陜西西安地區(qū)高一數(shù)學第二學期期末質(zhì)量檢測試題含解析_第2頁
2023-2024學年陜西西安地區(qū)高一數(shù)學第二學期期末質(zhì)量檢測試題含解析_第3頁
2023-2024學年陜西西安地區(qū)高一數(shù)學第二學期期末質(zhì)量檢測試題含解析_第4頁
2023-2024學年陜西西安地區(qū)高一數(shù)學第二學期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年陜西西安地區(qū)高一數(shù)學第二學期期末質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如果執(zhí)行右面的框圖,輸入,則輸出的數(shù)等于()A. B. C. D.2.已知數(shù)列、、、、,可猜想此數(shù)列的通項公式是().A. B.C. D.3.下列關(guān)于四棱柱的說法:①四條側(cè)棱互相平行且相等;②兩對相對的側(cè)面互相平行;③側(cè)棱必與底面垂直;④側(cè)面垂直于底面.其中正確結(jié)論的個數(shù)為()A.1 B.2 C.3 D.44.已知,且為第二象限角,則()A. B. C. D.5.在中,角所對的邊分別為,若.且,則的值為()A. B.C. D.或6.某公司在甲、乙、丙、丁四個地區(qū)分別有150,120,180,150個銷售點.公司為了調(diào)查產(chǎn)品銷售情況,需從這600個銷售點中抽取一個容量為100的樣本.記這項調(diào)查為①;在丙地區(qū)有20個大型銷售點,要從中抽取7個調(diào)查其銷售收入和售后服務等情況,記這項調(diào)查為②,則完成①,②這兩項調(diào)查宜采用的抽樣方法依次是()A.分層抽樣法,系統(tǒng)抽樣法 B.分層抽樣法,簡單隨機抽樣法C.系統(tǒng)抽樣法,分層抽樣法 D.簡單隨機抽樣法,分層抽樣法7.如圖,測量河對岸的塔高AB時可以選與塔底B在同一水平面內(nèi)的兩個測點C與D,測得,,CD=30,并在點C測得塔頂A的仰角為60°,則塔高AB等于A. B. C. D.8.在中,內(nèi)角,,的對邊分別為,,,且=.則A. B. C. D.9.已知圓C的半徑為2,在圓內(nèi)隨機取一點P,并以P為中點作弦AB,則弦長的概率為A. B. C. D.10.已知函數(shù),若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設是等差數(shù)列的前項和,若,則___________.12.已知數(shù)列中,,,設,若對任意的正整數(shù),當時,不等式恒成立,則實數(shù)的取值范圍是______.13.已知數(shù)列滿足,,,則數(shù)列的通項公式為________.14.在等差數(shù)列中,,,則.15.如圖,以為直徑的圓中,,在圓上,,于,于,,記,,的面積和為,則的最大值為______.16.如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù).現(xiàn)從1,2,3,4,5中任取3個不同的數(shù),則這3個數(shù)構(gòu)成一組勾股數(shù)的概率為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知定義域為的函數(shù)是奇函數(shù)(Ⅰ)求值;(Ⅱ)判斷并證明該函數(shù)在定義域上的單調(diào)性;(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍;(Ⅳ)設關(guān)于的函數(shù)有零點,求實數(shù)的取值范圍.18.已知函數(shù)(其中)的圖象如圖所示:(1)求函數(shù)的解析式及其對稱軸的方程;(2)當時,方程有兩個不等的實根,求實數(shù)的取值范圍,并求此時的值.19.某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:萬元)存在較好的線性關(guān)系,下表記錄了最近5次該產(chǎn)品的相關(guān)數(shù)據(jù).x(萬元)357911y(萬元)810131722(1)求y關(guān)于x的線性回歸方程;(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本12萬元的毛利率更大還是投入成本15萬元的毛利率更大(毛利率)?相關(guān)公式:,.20.已知等差數(shù)列的前n項和為,且,.(1)求的通項公式;(2)若,且,,成等比數(shù)列,求k的值.21.正項數(shù)列的前項和為,且.(Ⅰ)試求數(shù)列的通項公式;(Ⅱ)設,求的前項和為.(Ⅲ)在(Ⅱ)的條件下,若對一切恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:當時,該程序框圖所表示的算法功能為:,故選D.考點:程序框圖.2、D【解析】

利用賦值法逐項排除可得出結(jié)果.【詳解】對于A選項,,不合乎題意;對于B選項,,不合乎題意;對于C選項,,不合乎題意;對于D選項,當為奇數(shù)時,,此時,當為偶數(shù)時,,此時,合乎題意.故選:D.【點睛】本題考查利用觀察法求數(shù)列的通項,考查推理能力,屬于中等題.3、A【解析】

根據(jù)棱柱的概念和四棱錐的基本特征,逐項進行判定,即可求解,得到答案.【詳解】由題意,根據(jù)棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱,側(cè)棱垂直于底面的四棱柱叫做直四棱柱,由四棱柱的各個側(cè)面都是平行四邊形,所有的側(cè)棱都平行且相等,①正確;②兩對相對的側(cè)面互相平行,不正確,如下圖:左右側(cè)面不平行.本題題目說的是“四棱柱”不一定是“直四棱柱”,所以,③④不正確,故選A.【點睛】本題主要考查了四棱柱的概念及其應用,其中解答中熟記棱柱的概念以及四棱錐的基本特征是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.4、D【解析】

首先根據(jù)題意得到,,再計算即可.【詳解】因為,且為第二象限角,,..故選:D【點睛】本題主要考查正切二倍角的計算,同時考查了三角函數(shù)的誘導公式和同角三角函數(shù)的關(guān)系,屬于簡單題.5、D【解析】

首先根據(jù)余弦定理,得到或.再分別計算即可.【詳解】因為,所以,即:,解得:或.當時,.當時,.所以或.故選:D【點睛】本題主要考查余弦定理解三角形,熟記公式為解題的關(guān)鍵,屬于中檔題.6、B【解析】

此題為抽樣方法的選取問題.當總體中個體較少時宜采用簡單隨機抽樣法;當總體中的個體差異較大時,宜采用分層抽樣;當總體中個體較多時,宜采用系統(tǒng)抽樣.【詳解】依據(jù)題意,第①項調(diào)查中,總體中的個體差異較大,應采用分層抽樣法;第②項調(diào)查總體中個體較少,應采用簡單隨機抽樣法.

故選B.【點睛】本題考查隨機抽樣知識,屬基本題型、基本概念的考查.7、D【解析】在中,由正弦定理得,解得在中,8、C【解析】試題分析:由正弦定理得,,由于,,,故答案為C.考點:正弦定理的應用.9、B【解析】

先求出臨界狀態(tài)時點P的位置,若,則點P與點C的距離必須大于或等于臨界狀態(tài)時與點C的距離,再根據(jù)幾何概型的概率計算公式求解.【詳解】如圖所示:當時,此時,若,則點P必須位于以點C為圓心,半徑為1和半徑為2的圓環(huán)內(nèi),所以弦長的概率為:.故選B.【點睛】本題主要考查幾何概型與圓的垂徑定理,此類題型首先要求出臨界狀態(tài)時的情況,再判斷滿足條件的區(qū)域.10、D【解析】

令,根據(jù)奇偶性定義可判斷出為奇函數(shù),從而可求得,進而求得結(jié)果.【詳解】令為奇函數(shù)又即本題正確選項:【點睛】本題考查利用函數(shù)的奇偶性求解函數(shù)值的問題,關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式得到奇函數(shù),利用奇函數(shù)的定義可求得對應位置的函數(shù)值.二、填空題:本大題共6小題,每小題5分,共30分。11、1.【解析】

由已知結(jié)合等差數(shù)列的性質(zhì)求得,代入等差數(shù)列的前項和得答案.【詳解】解:在等差數(shù)列中,由,得,,則,故答案為:1.【點睛】本題主要考查等差數(shù)列的通項公式,考查等差數(shù)列的性質(zhì),考查了等差數(shù)列前項和的求法,屬于基礎題.12、【解析】∵,(,),當時,,,…,,并項相加,得:,

∴,又∵當時,也滿足上式,

∴數(shù)列的通項公式為,∴

,令(),則,∵當時,恒成立,∴在上是增函數(shù),

故當時,,即當時,,對任意的正整數(shù),當時,不等式恒成立,則須使,即對恒成立,即的最小值,可得,∴實數(shù)的取值范圍為,故答案為.點睛:本題考查數(shù)列的通項及前項和,涉及利用導數(shù)研究函數(shù)的單調(diào)性,考查運算求解能力,注意解題方法的積累,屬于難題通過并項相加可知當時,進而可得數(shù)列的通項公式,裂項、并項相加可知,通過求導可知是增函數(shù),進而問題轉(zhuǎn)化為,由恒成立思想,即可得結(jié)論.13、.【解析】

由題意得出,可得出數(shù)列為等比數(shù)列,確定出該數(shù)列的首項和公比,可求出數(shù)列的通項公式,進而求出數(shù)列的通項公式.【詳解】設,整理得,對比可得,,即,且,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,,因此,,故答案為.【點睛】本題考查數(shù)列通項的求解,解題時要結(jié)合遞推式的結(jié)構(gòu)選擇合適的方法來求解,同時要注意等差數(shù)列和等比數(shù)列定義的應用,考查分析問題和解決問題的能力,屬于中等題.14、8【解析】

設等差數(shù)列的公差為,則,所以,故答案為8.15、【解析】

可設,表示出S關(guān)于的函數(shù),從而轉(zhuǎn)化為三角函數(shù)的最大值問題.【詳解】設,則,,,當時,.【點睛】本題主要考查函數(shù)的實際運用,三角函數(shù)最值問題,意在考查學生的劃歸能力,分析能力和數(shù)學建模能力.16、.【解析】試題分析:從中任取3個不同的數(shù),有,,,,,,,,,共10種,其中只有為勾股數(shù),故這3個數(shù)構(gòu)成一組勾股數(shù)的概率為.考點:用列舉法求隨機事件的概率.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)答案見解析;(Ⅲ)(Ⅳ).【解析】試題分析:(1)根據(jù)奇函數(shù)性質(zhì)得,解得值;(2)根據(jù)單調(diào)性定義,作差通分,根據(jù)指數(shù)函數(shù)單調(diào)性確定因子符號,最后根據(jù)差的符號確定單調(diào)性(3)根據(jù)奇偶性以及單調(diào)性將不等式化為一元二次不等式恒成立問題,利用判別式求實數(shù)的取值范圍;(4)根據(jù)奇偶性以及單調(diào)性將方程轉(zhuǎn)化為一元二次方程有解問題,根據(jù)二次函數(shù)圖像與性質(zhì)求值域,即得實數(shù)的取值范圍.試題解析:(Ⅰ)由題設,需,∴,∴,經(jīng)驗證,為奇函數(shù),∴.(Ⅱ)減函數(shù)證明:任取,,且,則,∵∴∴,;∴,即∴該函數(shù)在定義域上是減函數(shù).(Ⅲ)由得,∵是奇函數(shù),∴,由(Ⅱ)知,是減函數(shù)∴原問題轉(zhuǎn)化為,即對任意恒成立,∴,得即為所求.(Ⅳ)原函數(shù)零點的問題等價于方程由(Ⅱ)知,,即方程有解∵,∴當時函數(shù)存在零點.點睛:利用函數(shù)性質(zhì)解不等式:首先根據(jù)函數(shù)的性質(zhì)把不等式轉(zhuǎn)化為的形式,然后根據(jù)函數(shù)的單調(diào)性去掉“”,轉(zhuǎn)化為具體的不等式(組),此時要注意與的取值應在外層函數(shù)的定義域內(nèi).18、(1),;(2),.【解析】

(1)根據(jù)圖像得A=2,利用,求ω值,再利用時取到最大值可求φ,從而得到函數(shù)解析式,進而求得對稱軸方程;(2)由得,方程f(x)=2a﹣3有兩個不等實根轉(zhuǎn)為f(x)的圖象與直線y=2a﹣3有兩個不同的交點,從而可求得a的取值范圍,利用圖像的性質(zhì)可得的值.【詳解】(1)由圖知,,解得ω=2,f(x)=2sin(2x+φ),當時,函數(shù)取得最大值,可得,即,,解得,又所以,故,令則,所以的對稱軸方程為;(2),所以方程有兩個不等實根時,的圖象與直線有兩個不同的交點,可得,當時,,有,故.【點睛】本題考查由y=Asin(ωx+φ)的部分圖象確定函數(shù)解析式,考查函數(shù)y=Asin(ωx+φ)的圖象及性質(zhì)的綜合應用,屬于中檔題.19、(1);(2)12萬元的毛利率更大【解析】

(1)根據(jù)題意代入數(shù)值分別算出與即可得解;(2)分別把與代入線性回歸方程算出再算出毛利率即可得解.【詳解】(1)由題意,.,,,故y關(guān)于x的線性回歸方程為.(2)當時,,對應的毛利率為,當時,,對應的毛利率為,故投入成本12萬元的毛利率更大.【點睛】本題考查了線性回歸方程的求解和應用,考查了計算能力,屬于基礎題.20、(1);(2)4.【解析】

(1)設等差數(shù)列的公差為d,根據(jù)等差數(shù)列的通項公式,列出方程組,即可求解.(2)由(1),求得,再根據(jù),,成等比數(shù)列,得到關(guān)于的方程,即可求解.【詳解】(1)設等差數(shù)列的公差為d,由題意可得:,解得.所以數(shù)列的通項公式為.(2)由知,因為,,成等比數(shù)列,所以,即,解得.【點睛】本題主要考查了等差數(shù)列的通項公式,以及前n項和公式的應用,其中解答中熟記等差數(shù)列的通項公式和前n項和公式,列出方程準確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.21、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)將所給條件式子兩邊同時平方,利用遞推法可得的表達式,由兩式相減,變形即可證明數(shù)列為等差數(shù)列,進而結(jié)合首項與公差求得的通項公式.(Ⅱ)由(Ⅰ)中可求得.將與代入即可求得數(shù)列的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論