版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
貴州省銅仁市第一中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,若,且,則的形狀為()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形2.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位3.已知扇形的半徑為,面積為,則這個扇形圓心角的弧度數(shù)為()A. B. C.2 D.44.下列命題正確的是()A.有兩個面平行,其余各面都是四邊形的幾何體叫棱柱.B.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱.C.有兩個面平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行的幾何體叫棱柱.D.用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺.5.下列向量組中,能作為表示它們所在平面內(nèi)的所有向量的基底的是()A., B.,C., D.,6.已知點(diǎn),則向量在方向上的投影為()A. B. C. D.7.在中,角均為銳角,且,則的形狀是()A.直角三角形 B.銳角三角形 C.鈍角三角形 D.等腰三角形8.已知基本單位向量,,則的值為()A.1 B.5 C.7 D.259.函數(shù)的零點(diǎn)所在的區(qū)間是()A. B. C. D.10.已知函數(shù),若存在實(shí)數(shù),滿足,則實(shí)數(shù)的取值范圍為(
)A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓錐的底面半徑為3,體積是,則圓錐側(cè)面積等于___________.12.在區(qū)間[-1,2]上隨機(jī)取一個數(shù)x,則x∈[0,1]的概率為.13.設(shè)為,的反函數(shù),則的值域?yàn)開_____.14.已知圓C的方程為,一定點(diǎn)為A(1,2),要使過A點(diǎn)作圓的切線有兩條,則a的取值范圍是____________15.若點(diǎn),關(guān)于直線l對稱,那么直線l的方程為________.16.在中,角所對的邊分別為,若,則=______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)設(shè),求滿足的實(shí)數(shù)的值;(2)若為上的奇函數(shù),試求函數(shù)的反函數(shù).18.已知數(shù)列的前項(xiàng)和為,且滿足(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),令,求19.交通指數(shù)是指交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個級別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴(yán)重?fù)矶?在晚高峰時段(),從某市交通指揮中心選取了市區(qū)20個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.(1)求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫€數(shù);(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?個路段,求依次抽取的三個級別路段的個數(shù);(3)從(2)中抽取的6個路段中任取2個,求至少有1個路段為輕度擁堵的概率.20.已知函數(shù).(1)求的最小正周期;(2)若,求當(dāng)時自變量的取值集合.21.已知向量=(sinx,cosx),=(cosx,cosx),=(2,1).(1)若∥,求sinxcosx的值;(2)若0<x≤,求函數(shù)f(x)=·的值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
由兩角和的正切公式求得,從而得,由二倍角公式求得,再求得,注意檢驗(yàn)符合題意,可判斷三角形形狀.【詳解】,∴,∴,由,即.∴或.當(dāng)時,,無意義.當(dāng)時,,此時為正三角形.故選:D.【點(diǎn)睛】本題考查三角形形狀的判斷,考查兩角和的正切公式和二倍角公式,根據(jù)三角公式求出角是解題的基本方法.2、D【解析】
直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位.故選:D.【點(diǎn)睛】本題考查三角函數(shù)圖象平移的應(yīng)用問題,屬于基礎(chǔ)題.3、D【解析】
利用扇形面積,結(jié)合題中數(shù)據(jù),建立關(guān)于圓心角的弧度數(shù)的方程,即可解得.【詳解】解:設(shè)扇形圓心角的弧度數(shù)為,因?yàn)樯刃嗡趫A的半徑為,且該扇形的面積為,則扇形的面積為,解得:.故選:D.【點(diǎn)睛】本題在已知扇形面積和半徑的情況下,求扇形圓心角的弧度數(shù),著重考查了弧度制的定義和扇形面積公式等知識,屬于基礎(chǔ)題.4、C【解析】試題分析:有兩個面平行,其余各面都是四邊形的幾何體,A錯;有兩個面平行,其余各面都是平行四邊形的幾何體如圖所示,B錯;用一個平行于底面的平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺,D錯;由棱柱的定義,C正確;考點(diǎn):1、棱柱的概念;2、棱臺的概念.5、B【解析】
以作為基底的向量需要是不共線的向量,可以從向量的坐標(biāo)發(fā)現(xiàn),,選項(xiàng)中的兩個向量均共線,得到正確結(jié)果是.【詳解】解:可以作為基底的向量需要是不共線的向量,中一個向量是零向量,兩個向量共線,不合要求中兩個向量是,,則故與不共線,故正確;中兩個向量是,兩個向量共線,項(xiàng)中的兩個向量是,兩個向量共線,故選:.【點(diǎn)睛】本題考查平面中兩向量的關(guān)系,屬于基礎(chǔ)題.6、A【解析】
,,向量在方向上的投影為,故選A.7、C【解析】,又角均為銳角,則,,且中,,的形狀是鈍角三角形,故選C.【方法點(diǎn)睛】本題主要考查利用誘導(dǎo)公式、正弦函數(shù)的單調(diào)性以及判斷三角形形狀,屬于中檔題.判斷三角形狀的常見方法是:(1)通過正弦定理和余弦定理,化邊為角,利用三角變換得出三角形內(nèi)角之間的關(guān)系進(jìn)行判斷;(2)利用正弦定理、余弦定理,化角為邊,通過代數(shù)恒等變換,求出邊與邊之間的關(guān)系進(jìn)行判斷;(3)根據(jù)余弦定理確定一個內(nèi)角為鈍角進(jìn)而知其為鈍角三角形.8、B【解析】
計(jì)算出向量的坐標(biāo),再利用向量的求模公式計(jì)算出的值.【詳解】由題意可得,因此,,故選B.【點(diǎn)睛】本題考查向量模的計(jì)算,解題的關(guān)鍵就是求出向量的坐標(biāo),并利用坐標(biāo)求出向量的模,考查運(yùn)算求解能力,屬于基礎(chǔ)題.9、B【解析】
根據(jù)零點(diǎn)存在性定理即可求解.【詳解】由函數(shù),則,,故函數(shù)的零點(diǎn)在區(qū)間上.故選:B【點(diǎn)睛】本題考查了利用零點(diǎn)存在性定理判斷零點(diǎn)所在的區(qū)間,需熟記定理內(nèi)容,屬于基礎(chǔ)題.10、A【解析】
根據(jù)題意可知方程有解即可,代入解析式化簡后,利用基本不等式得出,再利用分類討論思想即可求出實(shí)數(shù)的取值范圍.【詳解】由題意知,方程有解,則,化簡得,即,因?yàn)椋?,?dāng)時,化簡得,解得;當(dāng)時,化簡得,解得,綜上所述的取值范圍為.故答案為:A【點(diǎn)睛】本題主要考查了函數(shù)的基本性質(zhì)的應(yīng)用,以及利用基本不等式求最值的應(yīng)用,其中解答中利用題設(shè)條件化簡,合理利用基本不等式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:求圓錐側(cè)面積必須先求圓錐母線,既然已知體積,那么可先求出圓錐的高,再利用圓錐的性質(zhì)(圓錐的高,底面半徑,母線組成直角三角形)可得母線,,,,.考點(diǎn):圓錐的體積與面積公式,圓錐的性質(zhì).12、【解析】
直接利用長度型幾何概型求解即可.【詳解】因?yàn)閰^(qū)間總長度為,符合條件的區(qū)間長度為,所以,由幾何概型概率公式可得,在區(qū)間[-1,2]上隨機(jī)取一個數(shù)x,則x∈[0,1]的概率為,故答案為:.【點(diǎn)睛】解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與長度有關(guān)的幾何概型問題關(guān)鍵是計(jì)算問題的總長度以及事件的長度.13、【解析】
求出原函數(shù)的值域可得出其反函數(shù)的定義域,取交集可得出函數(shù)的定義域,再由函數(shù)的單調(diào)性可求出該函數(shù)的值域.【詳解】函數(shù)在上為增函數(shù),則函數(shù)的值域?yàn)椋?,函?shù)的定義域?yàn)?函數(shù)的定義域?yàn)?,由于函?shù)與函數(shù)單調(diào)性相同,可知,函數(shù)在上為增函數(shù).當(dāng)時,函數(shù)取得最小值;當(dāng)時,函數(shù)取得最大值.因此,函數(shù)的值域?yàn)?故答案為:.【點(diǎn)睛】本題考查函數(shù)值域的求解,考查函數(shù)單調(diào)性的應(yīng)用,明確兩個互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.14、【解析】
使過A點(diǎn)作圓的切線有兩條,定點(diǎn)在圓外,代入圓方程計(jì)算得到答案.【詳解】已知圓C的方程為,要使過A點(diǎn)作圓的切線有兩條即點(diǎn)A(1,2)在圓C外:恒成立.綜上所述:故答案為:【點(diǎn)睛】本題考查了點(diǎn)和圓的位置關(guān)系,通過切線數(shù)量判斷位置關(guān)系是解題的關(guān)鍵.15、【解析】
利用直線垂直求出對稱軸斜率,利用中點(diǎn)坐標(biāo)公式求出中點(diǎn),再由點(diǎn)斜式可得結(jié)果.【詳解】求得,∵點(diǎn),關(guān)于直線l對稱,∴直線l的斜率1,直線l過AB的中點(diǎn),∴直線l的方程為,即.故答案為:.【點(diǎn)睛】本題主要考查直線垂直的性質(zhì),考查了直線點(diǎn)斜式方程的應(yīng)用,屬于基礎(chǔ)題.16、【解析】根據(jù)正弦定理得三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)把代入函數(shù)解析式,代入方程即可求解.(2)由函數(shù)奇偶性得,然后求得的解析式,分段求解反函數(shù)即可.【詳解】(1)當(dāng)時,,由,得,即,解得.(2)為上的奇函數(shù),,則.,由,,得,;由,,得,.函數(shù)的反函數(shù)為.【點(diǎn)睛】本題主要考查了函數(shù)的解析式及求法,考查了反函數(shù)的求法,屬于中檔題.18、(1)(2)【解析】
試題分析:(1)利用得到相鄰兩項(xiàng)的關(guān)系,把問題轉(zhuǎn)化為等比數(shù)列問題;(2)利用裂項(xiàng)相消法求和.試題解析:(1)由,得得∴是等比數(shù)列,且公比為(2)由(1)及得,19、(1)輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫€數(shù)分別為6,9,3;(2)從交通指數(shù)在[4,6),[6,8),[8,10]的路段中分別抽取的個數(shù)為2,3,1;(3)【解析】
(1)根據(jù)在頻率分布直方圖中,小長方形的面積表示各組的頻率,可以求出頻率,再根據(jù)頻數(shù)等于頻率乘以樣本容量,求出頻數(shù);(2)根據(jù)(1)求出擁堵路段的個數(shù),求出每層之間的占有比例,然后求出每層的個數(shù);(3)先求出從(2)中抽取的6個路段中任取2個,有多少種可能情況,然后求出至少有1個路段為輕度擁堵有多少種可能情況,根據(jù)古典概型概率公式求出.【詳解】(1)由頻率分布直方圖得,這20個交通路段中,輕度擁堵的路段有(0.1+0.2)×1×20=6(個),中度擁堵的路段有(0.25+0.2)×1×20=9(個),嚴(yán)重?fù)矶碌穆范斡?0.1+0.05)×1×20=3(個).(2)由(1)知,擁堵路段共有6+9+3=18(個),按分層抽樣,從18個路段抽取6個,則抽取的三個級別路段的個數(shù)分別為,,,即從交通指數(shù)在[4,6),[6,8),[8,10]的路段中分別抽取的個數(shù)為2,3,1.(3)記抽取的2個輕度擁堵路段為,,抽取的3個中度擁堵路段為,,,抽取的1個嚴(yán)重?fù)矶侣范螢?,則從這6個路段中抽取2個路段的所有可能情況為:,共15種,其中至少有1個路段為輕度擁堵的情況為:,共9種.所以所抽取的2個路段中至少有1個路段為輕度擁堵的概率為.【點(diǎn)睛】本題考查了頻率直方圖的應(yīng)用、分層抽樣、古典概型概率的求法.解決本題的關(guān)鍵是對頻率直方圖所表示的意義要了解,分層抽樣的原則要知道,要能識別古典概型.20、(1);(2)或【解析】
(1)由輔助角公式可得,再求周期即可;(2)由求出,再解方程即可.【詳解】解:(1),則的最小正周期為.(2)因?yàn)?,所以,即,解?因?yàn)?,所?因?yàn)椋?,即,則或,解得或.故當(dāng)時,自變量的取值集合為或.【點(diǎn)睛】本題考查了三角恒等變換,重點(diǎn)考查了解三角方程,屬中檔題.21、(1);(2)【解析】
(1)由向量共線得tanx=2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 隴東學(xué)院《秦嶺探秘:少兒自然教育課程的孵化》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024版辦公家具買賣合同包括家具行業(yè)展會策劃與執(zhí)行服務(wù)3篇
- 2024年度水渠工程風(fēng)險管理與保險合同3篇
- Unit 1 Making friends PartA(教學(xué)實(shí)錄)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 2024年度重慶市與四川省農(nóng)產(chǎn)品供應(yīng)鏈融資合同2篇
- 2024年度區(qū)塊鏈技術(shù)應(yīng)用部分股權(quán)轉(zhuǎn)讓與信息安全合同3篇
- 委托加工鋼材協(xié)議
- 2024年旅游景區(qū)安全員聘用及應(yīng)急預(yù)案制定合同2篇
- 2024年度藝術(shù)展覽合同范本與演出場地租賃協(xié)議2篇
- 門市房屋租賃合同
- 2023六年級數(shù)學(xué)上冊 1 分?jǐn)?shù)乘法《小數(shù)乘分?jǐn)?shù)》說課稿 新人教版
- 店鋪(初級)營銷師認(rèn)證考試題庫附有答案
- 專題03 地球上的水-備戰(zhàn)2025年高考《地理》真題題源解密(新高考)(解析版)
- 醬油項(xiàng)目可行性研究報告
- 公司年會安保方案(2篇)
- GB/T 8492-2024一般用途耐熱鋼及合金鑄件
- 員工快速招聘方案
- 現(xiàn)代通信技術(shù)導(dǎo)論智慧樹知到期末考試答案章節(jié)答案2024年北京科技大學(xué)
- 新融合大學(xué)英語(I)智慧樹知到期末考試答案章節(jié)答案2024年江西理工大學(xué)
- 中醫(yī)培訓(xùn)課件:《耳穴基礎(chǔ)知識》
- 電大財(cái)務(wù)大數(shù)據(jù)分析編程作業(yè)5
評論
0/150
提交評論