版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆江蘇省姜堰區(qū)實(shí)驗(yàn)初中高一下數(shù)學(xué)期末調(diào)研試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在各項(xiàng)均為正數(shù)的數(shù)列中,對任意都有.若,則等于()A.256 B.510 C.512 D.10242.已知兩條平行直線和之間的距離等于,則實(shí)數(shù)的值為()A. B. C.或 D.3.給甲、乙、丙三人打電話,若打電話的順序是任意的,則第一個打電話給甲的概率是()A. B. C. D.4.已知函數(shù),則在上的單調(diào)遞增區(qū)間是()A. B. C. D.5.在中,角,,所對的邊為,,,且為銳角,若,,,則()A. B. C. D.6.若,則的坐標(biāo)是()A. B. C. D.7.已知集合,,則()A. B. C. D.8.已知函數(shù)在區(qū)間上至少取得2次最大值,則正整數(shù)t的最小值是()A.6 B.7 C.8 D.99.在△ABC中,AC,BC=1,∠B=45°,則∠A=()A.30° B.60° C.30°或150° D.60°或120°10.在中,若,則下列結(jié)論錯誤的是()A.當(dāng)時,是直角三角形 B.當(dāng)時,是銳角三角形C.當(dāng)時,是鈍角三角形 D.當(dāng)時,是鈍角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)扇形的半徑長為,面積為,則扇形的圓心角的弧度數(shù)是12.方程的解集是____________.13.在中,已知角的對邊分別為,且,,,若有兩解,則的取值范圍是__________.14.函數(shù)的定義域?yàn)開_______15.某校選修“營養(yǎng)與衛(wèi)生”課程的學(xué)生中,高一年級有30名,高二年級有40名.現(xiàn)用分層抽樣的方法從這70名學(xué)生中抽取一個樣本,已知在高二年級的學(xué)生中抽取了8名,則在該校高一年級的學(xué)生中應(yīng)抽取的人數(shù)為________.16.已知函數(shù)是定義域?yàn)榈呐己瘮?shù),當(dāng)時,,若關(guān)于的方程有且僅有6個不同實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知公差不為0的等差數(shù)列{an}滿足a3=9,a(1)求{a(2)設(shè)數(shù)列{bn}滿足bn=1n(18.已知向量.(1)求的值;(2)若,且,求.19.已知函數(shù)的圖象如圖所示.(1)求這個函數(shù)的解析式,并指出它的振幅和初相;(2)求函數(shù)在區(qū)間上的最大值和最小值,并指出取得最值時的的值.20.?dāng)?shù)列中,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求;⑶設(shè),是否存在最大的整數(shù),使得對任意,均有成立?若存在,求出的值;若不存在,請說明理由.21.設(shè)是一個公比為q的等比數(shù)列,且,,成等差數(shù)列.(1)求q;(2)若數(shù)列前4項(xiàng)的和,令(),求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
因?yàn)?,所以,則因?yàn)閿?shù)列的各項(xiàng)均為正數(shù),所以所以,故選C2、C【解析】
利用兩條平行線之間的距離公式可求的值.【詳解】兩條平行線之間的距離為,故或,故選C.【點(diǎn)睛】一般地,平行線和之間的距離為,應(yīng)用該公式時注意前面的系數(shù)要相等.3、B【解析】
根據(jù)題意,打電話的順序是任意的,打電話給甲乙丙三人的概率都相等均為,從而可得到正確的選項(xiàng).【詳解】∵打電話的順序是任意的,打電話給甲、乙、丙三人的概率都相等,∴第一個打電話給甲的概率為.故選:B.【點(diǎn)睛】此題考查了概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.4、C【解析】
先令,則可求得的單調(diào)區(qū)間,再根據(jù),對賦值進(jìn)而限定范圍即可【詳解】由題,令,則,當(dāng)時,在上單調(diào)遞增,則當(dāng)時,的單調(diào)增區(qū)間為,故選:C【點(diǎn)睛】本題考查正弦型函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題5、D【解析】
利用正弦定理化簡,再利用三角形面積公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【詳解】由于,有正弦定理可得:,即由于在中,,,所以,聯(lián)立,解得:,由于為銳角,且,所以所以在中,由余弦定理可得:,故(負(fù)數(shù)舍去)故答案選D【點(diǎn)睛】本題考查正弦定理,余弦定理,以及面積公式在三角形求邊長中的應(yīng)用,屬于中檔題.6、C【解析】
,.故選C.7、D【解析】依題意,故.8、C【解析】
先根據(jù)三角函數(shù)的性質(zhì)可推斷出函數(shù)的最小正周期為6,進(jìn)而推斷出,進(jìn)而求得t的范圍,進(jìn)而求得t的最小值.【詳解】函數(shù)的周期T=6,則,∴,∴正整數(shù)t的最小值是8.故選:C.【點(diǎn)睛】本題主要考查三角函數(shù)的周期性以及正弦函數(shù)的簡單性質(zhì),屬于基礎(chǔ)題.9、A【解析】
直接利用正弦定理求出sinA的大小,根據(jù)大邊對大角可求A為銳角,即可得解A的值.【詳解】因?yàn)椋骸鰽BC中,BC=1,AC,∠B=45°,所以:,sinA.因?yàn)椋築C<AC,可得:A為銳角,所以:A=30°.故選:A.【點(diǎn)評】本題考查正弦定理在解三角形中的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.10、D【解析】
由正弦定理化簡已知可得,利用余弦定理,勾股定理,三角形兩邊之和大于第三邊等知識逐一分析各個選項(xiàng)即可得解.【詳解】解:為非零實(shí)數(shù)),可得:,由正弦定理,可得:,對于A,時,可得:,可得,即為直角,可得是直角三角形,故正確;對于B,時,可得:,可得為最大角,由余弦定理可得,可得是銳角三角形,故正確;對于C,時,可得:,可得為最大角,由余弦定理可得,可得是鈍角三角形,故正確;對于D,時,可得:,可得,這樣的三角形不存在,故錯誤.故選:D.【點(diǎn)睛】本題主要考查了正弦定理,余弦定理,勾股定理在解三角形中的應(yīng)用,考查了分類討論思想,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】試題分析:設(shè)扇形圓心角的弧度數(shù)為α,則扇形面積為S=αr2=α×22=4解得:α=2考點(diǎn):扇形面積公式.12、【解析】
由方程可得或,然后分別解出規(guī)定范圍內(nèi)的解即可.【詳解】因?yàn)樗曰蛴傻没蛞驗(yàn)?,所以由得因?yàn)?,所以綜上:解集是故答案為:【點(diǎn)睛】方程的等價(jià)轉(zhuǎn)化為或,不要把遺漏了.13、【解析】
利用正弦定理得到,再根據(jù)有兩解得到,計(jì)算得到答案.【詳解】由正弦定理得:若有兩解:故答案為【點(diǎn)睛】本題考查了正弦定理,有兩解,意在考查學(xué)生的計(jì)算能力.14、【解析】
根據(jù)反余弦函數(shù)的定義,可得函數(shù)滿足,即可求解.【詳解】由題意,根據(jù)反余弦函數(shù)的定義,可得函數(shù)滿足,解得,即函數(shù)的定義域?yàn)?故答案為:【點(diǎn)睛】本題主要考查了反余弦函數(shù)的定義的應(yīng)用,其中解答中熟記反余弦函數(shù)的定義,列出不等式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、6【解析】
利用分層抽樣的定義求解.【詳解】設(shè)從高一年級的學(xué)生中抽取x名,由分層抽樣的知識可知,解得x=6.故答案為6.【點(diǎn)睛】本題主要考查分層抽樣,意在考查學(xué)生對該知識的掌握水平和分析推理能力.16、0<a≤或a.【解析】
運(yùn)用偶函數(shù)的性質(zhì),作出函數(shù)f(x)的圖象,由5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),結(jié)合圖象,分析有且僅有6個不同實(shí)數(shù)根的a的情況,即可得到a的范圍.【詳解】函數(shù)是定義域?yàn)榈呐己瘮?shù),作出函數(shù)f(x)的圖象如圖:關(guān)于x的方程5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),當(dāng)0≤x≤2時,f(x)∈[0,],x>2時,f(x)∈(,).由,則f(x)有4個實(shí)根,由題意,只要f(x)=a有2個實(shí)根,則由圖象可得當(dāng)0<a≤時,f(x)=a有2個實(shí)根,當(dāng)a時,f(x)=a有2個實(shí)根.綜上可得:0<a≤或a.故答案為0<a≤或a..【點(diǎn)睛】本題考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用,考查方程和函數(shù)的轉(zhuǎn)化思想,運(yùn)用數(shù)形結(jié)合的思想方法是解決的常用方法.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)an=4n-3【解析】
(1)根據(jù)條件列方程組,求出首項(xiàng)和公差即可得出通項(xiàng)公式;(2)利用裂項(xiàng)相消法求和.【詳解】(1)設(shè)等差數(shù)列an的公差為d(d≠0)a1解得d=4或d=0(舍去),a1∴a(2)∵b∴S=1【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,考查了利用裂項(xiàng)相消進(jìn)行數(shù)列求和的方法,屬于基礎(chǔ)題.18、(1);(2).【解析】
(1)對等式進(jìn)行平方運(yùn)算,根據(jù)平面向量的模和數(shù)量積的坐標(biāo)表示公式,結(jié)合兩角差的余弦公式直接求解即可;(2)由(1)可以結(jié)合同角的三角函數(shù)關(guān)系式求出的值,再由同角三角函數(shù)關(guān)系式結(jié)合的值求出的值,最后利用兩角和的正弦公式求出的值即可.【詳解】(1);(2)因?yàn)椋?,而,所以,因?yàn)?,,所?因此有.【點(diǎn)睛】本題考查了已知平面向量的模求參數(shù)問題,考查了平面向量數(shù)量積的坐標(biāo)表示公式,考查了兩角差的余弦公式,考查了兩角和的正弦公式,考查了同角的三角函數(shù)關(guān)系式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.19、(1)函數(shù)的解析式為,其振幅是2,初相是(2)時,函數(shù)取得最大值0;時,函數(shù)取得最小值勤-2【解析】
(1)根據(jù)圖像寫出,由周期求出,再由點(diǎn)確定的值.(2)根據(jù)的取值范圍確定的取值范圍,再由的單調(diào)求出最值【詳解】(1)由圖象知,函數(shù)的最大值為2,最小值為-2,∴,又∵,∴,,∴.∴函數(shù)的解析式為.∵函數(shù)的圖象經(jīng)過點(diǎn),∴,∴,又∵,∴.故函數(shù)的解析式為,其振幅是2,初相是.(2)∵,∴.于是,當(dāng),即時,函數(shù)取得最大值0;當(dāng),即時,函數(shù)取得最小值為-2.【點(diǎn)睛】本題考查由圖像確定三角函數(shù)、給定區(qū)間求三角函數(shù)的最值,屬于基礎(chǔ)題.20、(1);(2)(3)7.【解析】
(1)由可得為等差數(shù)列,從而可得數(shù)列的通項(xiàng)公式;(2)先判斷時數(shù)列的各項(xiàng)為正數(shù),時數(shù)列各項(xiàng)為負(fù)數(shù),分兩種情況討論分別利用等差數(shù)列求和公式求解即可;(3)求得利用裂項(xiàng)相消法求得,由可得結(jié)果.【詳解】(1)由題意,,為等差數(shù)列,設(shè)公差為,由題意得,.(2)若時,時,,故.(3),若對任意成立,的最小值是,對任意成立,的最大整數(shù)值是7,即存在最大整數(shù)使對任意,均有【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式與求和公式,以及裂項(xiàng)相消法求和,屬于中檔題.裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見的裂項(xiàng)技巧:(1);(2);(3);(4);此外
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工作心得體會格式
- 2025機(jī)械試用買賣合同書參考式樣
- 2025贊助合同常用版范本
- 2025補(bǔ)償貿(mào)易購銷合同書范本
- 二零二五年度農(nóng)村房屋買賣合同協(xié)議書(含農(nóng)村土地整治工程)
- 二零二五年度高效養(yǎng)雞場飼養(yǎng)員技能提升合同3篇
- 二零二五年度二零二五年度商標(biāo)轉(zhuǎn)讓與全球市場布局合同3篇
- 2025知識產(chǎn)權(quán)共享合同范本
- 2025年度子女對父母贍養(yǎng)及家庭財(cái)產(chǎn)管理協(xié)議3篇
- 2025年度公司汽車銷售業(yè)務(wù)員銷售目標(biāo)責(zé)任合同2篇
- 戶口未婚改已婚委托書
- 售后響應(yīng)時間保障措施
- 《工業(yè)數(shù)據(jù)采集技術(shù)》課程標(biāo)準(zhǔn)
- 智慧農(nóng)業(yè)的無人機(jī)與遙感技術(shù)
- 河北省石家莊市2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量檢測生物試題(含答案解析)
- 循證護(hù)理在骨科中的護(hù)理
- 心肺復(fù)蘇應(yīng)急演練腳本
- 華南理工大學(xué)2022年622物理化學(xué)考研真題(含答案)
- 抖音認(rèn)證承諾函
- 建筑垃圾安全生產(chǎn)管理制度范本
- 酒店總經(jīng)理應(yīng)聘計(jì)劃書
評論
0/150
提交評論