![人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第12講 5.3.1函數(shù)的單調(diào)性(教師版)_第1頁](http://file4.renrendoc.com/view5/M01/11/3B/wKhkGGZNdXCALFveAAHrID3PkfE585.jpg)
![人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第12講 5.3.1函數(shù)的單調(diào)性(教師版)_第2頁](http://file4.renrendoc.com/view5/M01/11/3B/wKhkGGZNdXCALFveAAHrID3PkfE5852.jpg)
![人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第12講 5.3.1函數(shù)的單調(diào)性(教師版)_第3頁](http://file4.renrendoc.com/view5/M01/11/3B/wKhkGGZNdXCALFveAAHrID3PkfE5853.jpg)
![人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第12講 5.3.1函數(shù)的單調(diào)性(教師版)_第4頁](http://file4.renrendoc.com/view5/M01/11/3B/wKhkGGZNdXCALFveAAHrID3PkfE5854.jpg)
![人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第12講 5.3.1函數(shù)的單調(diào)性(教師版)_第5頁](http://file4.renrendoc.com/view5/M01/11/3B/wKhkGGZNdXCALFveAAHrID3PkfE5855.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第03講5.3.1函數(shù)的單調(diào)性課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①理解導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系。②掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法。③能利用導(dǎo)數(shù)求不超過三次多項式函數(shù)的單調(diào)區(qū)間。④會利用導(dǎo)數(shù)證明一些簡單的不等式問題。⑤掌握利用導(dǎo)數(shù)研究含參數(shù)的單調(diào)性的基本方法。通過本節(jié)課要求能利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,會求簡單函數(shù)的單調(diào)區(qū)間,能證明簡單的不等式,會利用導(dǎo)數(shù)解決單調(diào)性與含參數(shù)相關(guān)的問題.知識點01:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系(導(dǎo)函數(shù)看正負(fù),原函數(shù)看增減)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)可導(dǎo),(1)若SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)是單調(diào)遞增函數(shù);(2)若SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)是單調(diào)遞減函數(shù);(3)若恒有SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)是常數(shù)函數(shù).注意:討論函數(shù)的單調(diào)性或求函數(shù)的單調(diào)區(qū)間的實質(zhì)是解不等式,求解時,要堅持“定義域優(yōu)先”原則條件恒有結(jié)論函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上可導(dǎo)SKIPIF1<0SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增SKIPIF1<0SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減SKIPIF1<0SKIPIF1<0在SKIPIF1<0內(nèi)是常數(shù)函數(shù)【即學(xué)即練1】(2023下·新疆巴音郭楞·高二校考期末)如圖所示是函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0的圖象,則下列判斷中正確的是(
)
A.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù)B.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù)C.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù)D.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù)【答案】A【詳解】對于選項A:當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故A正確;對于選項B:當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,故B錯誤;對于選項C:當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故C錯誤;對于選項D:當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故D錯誤;故選:A.知識點02:求已知函數(shù)(不含參)的單調(diào)區(qū)間①求SKIPIF1<0的定義域②求SKIPIF1<0③令SKIPIF1<0,解不等式,求單調(diào)增區(qū)間④令SKIPIF1<0,解不等式,求單調(diào)減區(qū)間注:求單調(diào)區(qū)間時,令SKIPIF1<0(或SKIPIF1<0)不跟等號.【即學(xué)即練2】(2023下·四川資陽·高二統(tǒng)考期末)函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】A【詳解】因為SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0有:SKIPIF1<0,所以函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,故B,C,D錯誤.故選:A.知識點03:由函數(shù)SKIPIF1<0的單調(diào)性求參數(shù)的取值范圍的方法1、已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)①已知SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增SKIPIF1<0SKIPIF1<0,SKIPIF1<0恒成立.②已知SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減SKIPIF1<0SKIPIF1<0,SKIPIF1<0恒成立.注:已知單調(diào)性,等價條件中的不等式含等號.2、已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間①已知SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)增區(qū)間SKIPIF1<0SKIPIF1<0使得SKIPIF1<0有解②已知SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)減區(qū)間SKIPIF1<0SKIPIF1<0使得SKIPIF1<0有解3、已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)SKIPIF1<0SKIPIF1<0,使得SKIPIF1<0有變號零點【即學(xué)即練3】(2023上·新疆·高三校聯(lián)考期中)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【詳解】因為SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,即SKIPIF1<0在SKIPIF1<0恒成立,又SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.【即學(xué)即練4】(2023上·貴州貴陽·高三清華中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0存在單調(diào)遞減區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,求導(dǎo)得SKIPIF1<0,依題意,不等式SKIPIF1<0在SKIPIF1<0上有解,等價于SKIPIF1<0在SKIPIF1<0上有解,而SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,則SKIPIF1<0,所以實數(shù)a的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.知識點04:含參問題討論單調(diào)性第一步:求SKIPIF1<0的定義域第二步:求SKIPIF1<0(導(dǎo)函數(shù)中有分母通分)第三步:確定導(dǎo)函數(shù)有效部分,記為SKIPIF1<0對于SKIPIF1<0進(jìn)行求導(dǎo)得到SKIPIF1<0,對SKIPIF1<0初步處理(如通分),提出SKIPIF1<0的恒正部分,將該部分省略,留下的部分則為SKIPIF1<0的有效部分(如:SKIPIF1<0,則記SKIPIF1<0為SKIPIF1<0的有效部分).接下來就只需考慮導(dǎo)函數(shù)有效部分,只有該部分決定SKIPIF1<0的正負(fù).第四步:確定導(dǎo)函數(shù)有效部分SKIPIF1<0的類型:①SKIPIF1<0為一次型(或可化為一次型)②SKIPIF1<0為二次型(或可化為二次型)第五步:通過分析導(dǎo)函數(shù)有效部分,討論SKIPIF1<0的單調(diào)性題型01求函數(shù)的單調(diào)區(qū)間【典例1】(2022下·湖北·高二統(tǒng)考期末)函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,故選:B【典例2】(2023下·河北滄州·高二??茧A段練習(xí))函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】SKIPIF1<0,定義域為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.故選:D.【變式1】(多選)(2023下·吉林長春·高二長春外國語學(xué)校校考期中)函數(shù)SKIPIF1<0的一個單調(diào)遞增區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【詳解】由題意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0的增區(qū)間是SKIPIF1<0,因此ABD正確,C錯誤.故選:ABD.題型02函數(shù)與導(dǎo)函數(shù)圖象間的關(guān)系【典例1】(2023·高二課時練習(xí))已知函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0的圖象如圖,則下列結(jié)論正確的是(
)
A.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增B.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減C.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增D.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增【答案】C【詳解】由導(dǎo)數(shù)的圖象可知,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,故C正確;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,故A、B、D錯誤;故選:C.【典例2】(2022下·廣東深圳·高二統(tǒng)考期末)設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),SKIPIF1<0的圖象如圖所示,則SKIPIF1<0的圖象最有可能的是(
)A. B.C. D.【答案】C【詳解】由導(dǎo)函數(shù)的圖象可得當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增.只有C選項的圖象符合.故選:C.【變式1】(2023下·四川成都·高二四川省成都市新都一中校聯(lián)考期中)已知函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0的圖像如圖所示,則函數(shù)SKIPIF1<0(
)A.在SKIPIF1<0上單調(diào)遞增 B.在SKIPIF1<0上單調(diào)遞減C.在SKIPIF1<0上單調(diào)遞增 D.在SKIPIF1<0上單調(diào)遞減【答案】D【詳解】由圖可知:當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;故選:D.【變式2】(2022·湖南·校聯(lián)考二模)設(shè)函數(shù)SKIPIF1<0在定義域內(nèi)可導(dǎo),SKIPIF1<0的圖象如圖所示,則其導(dǎo)函數(shù)SKIPIF1<0的圖象可能是(
)
A. B.C. D.【答案】D【詳解】由SKIPIF1<0的圖象可知,SKIPIF1<0在SKIPIF1<0上為單調(diào)遞減函數(shù),故SKIPIF1<0時,SKIPIF1<0,故排除A,C;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的圖象是先遞增,再遞減,最后再遞增,所以SKIPIF1<0的值是先正,再負(fù),最后是正,因此排除B,故選:D.題型03已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào),求參數(shù)【典例1】(2023上·廣西·高三南寧三中校聯(lián)考階段練習(xí))若函數(shù)SKIPIF1<0是SKIPIF1<0上的減函數(shù),則實數(shù)SKIPIF1<0的最大值為.【答案】SKIPIF1<0/SKIPIF1<0【詳解】由函數(shù)SKIPIF1<0是SKIPIF1<0上的減函數(shù),則SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,可得SKIPIF1<0,所以SKIPIF1<0,即實數(shù)SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【典例2】(2023·海南·校聯(lián)考模擬預(yù)測)設(shè)SKIPIF1<0且SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則a的取值范圍是.【答案】SKIPIF1<0【詳解】由題意知:SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,要使SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0【典例3】(2023上·遼寧大連·高三大連市金州高級中學(xué)??计谥校┤艉瘮?shù)SKIPIF1<0在SKIPIF1<0具有單調(diào)性,則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由SKIPIF1<0,當(dāng)函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增時,SKIPIF1<0恒成立,得SKIPIF1<0,設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,因此有SKIPIF1<0,當(dāng)函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減時,SKIPIF1<0恒成立,得SKIPIF1<0,設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,顯然無論SKIPIF1<0取何實數(shù),不等式SKIPIF1<0不能恒成立,綜上所述,a的取值范圍是SKIPIF1<0,故選:C【變式1】(2023上·江蘇蘇州·高三常熟中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則實數(shù)a的取值范圍是.【答案】SKIPIF1<0【詳解】由SKIPIF1<0得SKIPIF1<0,由于函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0在SKIPIF1<0上恒成立,因此在SKIPIF1<0對任意的SKIPIF1<0恒成立,所以SKIPIF1<0,故答案為:SKIPIF1<0【變式2】(2023·海南省直轄縣級單位·??寄M預(yù)測)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則實數(shù)SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【詳解】由題設(shè)SKIPIF1<0在SKIPIF1<0上恒成立.設(shè)SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上恒成立,又SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0題型04已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間,求參數(shù)【典例1】(2023上·浙江寧波·高二鎮(zhèn)海中學(xué)??计谥校┤艉瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有單調(diào)遞增區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】SKIPIF1<0,由題意SKIPIF1<0在SKIPIF1<0上有解,即SKIPIF1<0在SKIPIF1<0上有解,根據(jù)對勾函數(shù)的性質(zhì)可知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以在SKIPIF1<0時取最大值,故SKIPIF1<0,故實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0【典例2】(2023下·江西撫州·高二江西省臨川第二中學(xué)??茧A段練習(xí))函數(shù)SKIPIF1<0在SKIPIF1<0上存在單調(diào)遞增區(qū)間,則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】函數(shù)SKIPIF1<0,∴SKIPIF1<0,∵函數(shù)SKIPIF1<0在SKIPIF1<0上存在單調(diào)遞增區(qū)間,SKIPIF1<0,即SKIPIF1<0有解,令SKIPIF1<0,SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0即可.故答案為:SKIPIF1<0【變式1】(2023下·廣西·高二校聯(lián)考期中)若函數(shù)SKIPIF1<0在SKIPIF1<0存在單調(diào)遞減區(qū)間,則a的取值范圍為.【答案】SKIPIF1<0【詳解】SKIPIF1<0,等價于SKIPIF1<0在SKIPIF1<0有解,即SKIPIF1<0在SKIPIF1<0有解,即SKIPIF1<0在SKIPIF1<0有解,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上是增函數(shù),∴SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.題型05已知函數(shù)SKIPIF1<0在的單調(diào)區(qū)間為(是)SKIPIF1<0,求參數(shù)【典例1】(2023下·高二課時練習(xí))已知函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】SKIPIF1<0,因為函數(shù)SKIPIF1<0單調(diào)遞減區(qū)間是SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以函數(shù)SKIPIF1<0單調(diào)遞減區(qū)間是SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.題型06已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào),求參數(shù)【典例1】(2023下·湖北·高二校聯(lián)考階段練習(xí))若函數(shù)SKIPIF1<0在其定義域的一個子區(qū)間SKIPIF1<0內(nèi)不是單調(diào)函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0(舍去),因為SKIPIF1<0在定義域的一個子區(qū)間SKIPIF1<0內(nèi)不是單調(diào)函數(shù),所以SKIPIF1<0,得SKIPIF1<0,綜上,SKIPIF1<0,故選:A【典例2】(2022上·河南·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不是單調(diào)函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因為SKIPIF1<0在區(qū)間SKIPIF1<0上不是單調(diào)函數(shù),所以SKIPIF1<0在區(qū)間SKIPIF1<0上有解,即SKIPIF1<0在區(qū)間SKIPIF1<0上有解.令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.又因為SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0.故選:A【變式1】(2022·全國·高二專題練習(xí))已知函數(shù)SKIPIF1<0.若SKIPIF1<0在SKIPIF1<0內(nèi)不單調(diào),則實數(shù)a的取值范圍是.【答案】SKIPIF1<0【詳解】由SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0內(nèi)為減函數(shù)時,則SKIPIF1<0在SKIPIF1<0內(nèi)恒成立,所以SKIPIF1<0在SKIPIF1<0內(nèi)恒成立,當(dāng)SKIPIF1<0在SKIPIF1<0內(nèi)為增函數(shù)時,則SKIPIF1<0在SKIPIF1<0內(nèi)恒成立,所以SKIPIF1<0在SKIPIF1<0內(nèi)恒成立,令SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增,在SKIPIF1<0內(nèi)單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0內(nèi)的值域為SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)時,a的取值范圍是SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上不單調(diào)時,實數(shù)a的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【變式2】(2022下·福建漳州·高二福建省漳州第一中學(xué)??茧A段練習(xí))若函數(shù)SKIPIF1<0在區(qū)間(1,4)上不單調(diào),則實數(shù)a的取值范圍是.【答案】(4,5)【詳解】解:SKIPIF1<0函數(shù)SKIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào),則SKIPIF1<0在SKIPIF1<0上存在變號零點,由SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0遞增,而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.題型07含參問題討論單調(diào)性(導(dǎo)函數(shù)有效部分是一次型)【典例1】(2023上·陜西咸陽·高三統(tǒng)考期中)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0的極值;(2)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間.【答案】(1)函數(shù)SKIPIF1<0的極大值為SKIPIF1<0,無極小值(2)答案見解析【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,其定義域為SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0函數(shù)SKIPIF1<0的極大值為SKIPIF1<0,無極小值.(2)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0,綜上,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.【典例2】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0.求函數(shù)SKIPIF1<0的單調(diào)區(qū)間.【答案】增區(qū)間為SKIPIF1<0,減區(qū)間為SKIPIF1<0.【詳解】SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.【變式1】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,討論函數(shù)SKIPIF1<0的單調(diào)性.【答案】答案見解析【詳解】由函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,若SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減.若SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增.若SKIPIF1<0,此時函數(shù)SKIPIF1<0為常數(shù)函數(shù),無單調(diào)性.【變式2】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0.討論函數(shù)SKIPIF1<0的單調(diào)性.【答案】答案見解析【詳解】由題意,得函數(shù)SKIPIF1<0的定義域為R,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0對任意SKIPIF1<0恒成立,∴函數(shù)SKIPIF1<0在R上單調(diào)遞減;當(dāng)SKIPIF1<0時,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,∴函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.綜上,當(dāng)SKIPIF1<0時,SKIPIF1<0在R上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.題型08含參問題討論單調(diào)性(導(dǎo)函數(shù)有效部分是二次型且可因式分解)【典例1】(2023上·江蘇揚(yáng)州·高三儀征市第二中學(xué)校考期中)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)若SKIPIF1<0是函數(shù)SKIPIF1<0的極值點,求a的值;(2)若SKIPIF1<0,討論函數(shù)SKIPIF1<0的單調(diào)性.【答案】(1)SKIPIF1<0(2)答案見解析【詳解】(1)SKIPIF1<0SKIPIF1<0,因為SKIPIF1<0是函數(shù)SKIPIF1<0的極值點,所以SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0.即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0是函數(shù)SKIPIF1<0的極值點.故SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.綜上,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,在SKIPIF1<0上遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.【典例2】(2024·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;【答案】答案見解析【詳解】SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.綜上所述,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,無單調(diào)遞減區(qū)間;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為在SKIPIF1<0,SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.【典例3】(2023上·甘肅慶陽·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0SKIPIF1<0(1)若SKIPIF1<0,求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間.【答案】(1)SKIPIF1<0(2)答案見解析【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以切線的斜率SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(2)因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0;綜上所述,當(dāng)SKIPIF1<0時,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0.【變式1】(2023上·河南南陽·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)當(dāng)SKIPIF1<0時,討論函數(shù)SKIPIF1<0的單調(diào)性;【答案】(1)SKIPIF1<0(2)在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以,當(dāng)SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0,所以,由導(dǎo)數(shù)的幾何意義知曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0.(2)因為SKIPIF1<0,易知,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減.【變式2】(2023上·北京順義·高三楊鎮(zhèn)第一中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0的最小值;(2)當(dāng)SKIPIF1<0時,討論SKIPIF1<0的單調(diào)性.【答案】(1)SKIPIF1<0(2)答案見解析【詳解】(1)當(dāng)SKIPIF1<0時:SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0,又因為當(dāng)SKIPIF1<0,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞增.所以SKIPIF1<0的最小值為SKIPIF1<0SKIPIF1<0.(2)SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.①若SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;②若SKIPIF1<0,則SKIPIF1<0.故當(dāng)SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.③若SKIPIF1<0,則SKIPIF1<0.故當(dāng)SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.綜上所述,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.【變式2】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,求SKIPIF1<0的單調(diào)遞減區(qū)間.【答案】答案見解析【詳解】易得SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時,因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0.當(dāng)SKIPIF1<0時,①若SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0;②若SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,SKIPIF1<0沒有單調(diào)遞減區(qū)間;③若SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0.綜上所述,當(dāng)SKIPIF1<0時,SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0無單調(diào)遞減區(qū)間;當(dāng)SKIPIF1<0時,SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0.題型09含參問題討論單調(diào)性(導(dǎo)函數(shù)有效部分是二次型且不可因式分解)【典例1】(2023·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0為常數(shù),討論函數(shù)SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國冷凍廣式點心行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球半導(dǎo)體旋涂玻璃行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國高分辨率盤式離心粒度分析儀行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025銷售合同天津步思特科技有限公司貨物與售后服務(wù)
- 家庭裝修合同書
- 2025二期消防水炮火災(zāi)自動報警及聯(lián)動控制系統(tǒng)供貨維修項目施工合同
- 2025鋼筋勞務(wù)用工合同全面版
- 預(yù)拌混凝土采購合同
- 提高污水處理效果的技術(shù)改進(jìn)研究
- 民間借款合同示范文本
- SB-T 11238-2023 報廢電動汽車回收拆解技術(shù)要求
- 旅游公司發(fā)展規(guī)劃
- 新舊施工現(xiàn)場臨時用電安全技術(shù)規(guī)范對照表
- 03軸流式壓氣機(jī)b特性
- 五星級酒店收入測算f
- 某省博物館十大展陳評選項目申報書
- GB/T 9109.5-2017石油和液體石油產(chǎn)品動態(tài)計量第5部分:油量計算
- GB/T 16316-1996電氣安裝用導(dǎo)管配件的技術(shù)要求第1部分:通用要求
- GA/T 455-2021居民身份證印刷要求
- 邀請函模板完整
- 建設(shè)工程施工合同糾紛涉及的法律適用問題課件
評論
0/150
提交評論