版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山西省臨汾市霍峰中學(xué)2024年中考猜題數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在射線AB上順次取兩點C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點A沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為α(其中0°<α<45°),旋轉(zhuǎn)后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點G,H.若CG=x,EH=y,則下列函數(shù)圖象中,能反映y與x之間關(guān)系的是()A. B. C. D.2.一元二次方程x2+2x﹣15=0的兩個根為()A.x1=﹣3,x2=﹣5B.x1=3,x2=5C.x1=3,x2=﹣5D.x1=﹣3,x2=53.如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊4.已知拋物線y=x2-2mx-4(m>0)的頂點M關(guān)于坐標(biāo)原點O的對稱點為M′,若點M′在這條拋物線上,則點M的坐標(biāo)為()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)5.實數(shù)的倒數(shù)是()A. B. C. D.6.若,則3(x-2)2A.﹣6B.6C.18D.307.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠CDE的大小是()A.40° B.43° C.46° D.54°8.如圖,O為坐標(biāo)原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.69.如圖,AB∥CD,點E在線段BC上,CD=CE,若∠ABC=30°,則∠D為()A.85° B.75° C.60° D.30°10.若關(guān)于,的二元一次方程組的解也是二元一次方程的解,則的值為A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.有一個計算程序,每次運算都是把一個數(shù)先乘以2,再除以它與1的和,多次重復(fù)進(jìn)行這種運算的過程如下:則,y2=_____,第n次的運算結(jié)果yn=_____.(用含字母x和n的代數(shù)式表示).12.如圖,量角器的0度刻度線為,將一矩形直尺與量角器部分重疊,使直尺一邊與量角器相切于點,直尺另一邊交量角器于點,,量得,點在量角器上的讀數(shù)為,則該直尺的寬度為____________.13.已知反比例函數(shù)的圖像經(jīng)過點,那么的值是__.14.在平面直角坐標(biāo)系中,點P到軸的距離為1,到軸的距離為2.寫出一個符合條件的點P的坐標(biāo)________________.15.如圖,已知直線y=x+4與雙曲線y=(x<0)相交于A、B兩點,與x軸、y軸分別相交于D、C兩點,若AB=2,則k=_____.16.如圖,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分線與AC交于點D,與AB交于點E,連接BD.若AD=14,則BC的長為_____.三、解答題(共8題,共72分)17.(8分)某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共60件,需購買甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料4千克,乙種材料1千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元.(1)甲、乙兩種材料每千克分別是多少元?(2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不能超過10000元,且生產(chǎn)B產(chǎn)品要超過38件,問有哪幾種符合條件的生產(chǎn)方案?(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費40元,若生產(chǎn)一件B產(chǎn)品需加工費50元,應(yīng)選擇哪種生產(chǎn)方案,才能使生產(chǎn)這批產(chǎn)品的成本最低?請直接寫出方案.18.(8分)甲、乙兩個商場出售相同的某種商品,每件售價均為3000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一件按原售價收費,其余每件優(yōu)惠30%;乙商場的優(yōu)惠條件是:每件優(yōu)惠25%.設(shè)所買商品為x件時,甲商場收費為y1元,乙商場收費為y2元.分別求出y1,y2與x之間的關(guān)系式;當(dāng)甲、乙兩個商場的收費相同時,所買商品為多少件?當(dāng)所買商品為5件時,應(yīng)選擇哪個商場更優(yōu)惠?請說明理由.19.(8分)已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.求一次函數(shù)和反比例函數(shù)的解析式;求△AOB的面積;觀察圖象,直接寫出不等式kx+b﹣>0的解集.20.(8分)如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=BE=2,sin∠ACD=,求四邊形ABCD的面積.21.(8分)如圖,一位測量人員,要測量池塘的寬度的長,他過兩點畫兩條相交于點的射線,在射線上取兩點,使,若測得米,他能求出之間的距離嗎?若能,請你幫他算出來;若不能,請你幫他設(shè)計一個可行方案.22.(10分)一個不透明的口袋中裝有2個紅球、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.23.(12分)如圖,點A是反比例函數(shù)y1=4x與一次函數(shù)y2=kx+b在x軸上方的圖象的交點,過點A作AC⊥x軸,垂足是點C,AC=OC.一次函數(shù)求點A的坐標(biāo);若梯形ABOC的面積是3,求一次函數(shù)y2=kx+b的解析式;結(jié)合這兩個函數(shù)的完整圖象:當(dāng)y1>24.在平面直角坐標(biāo)系xOy中,點M的坐標(biāo)為,點N的坐標(biāo)為,且,,我們規(guī)定:如果存在點P,使是以線段MN為直角邊的等腰直角三角形,那么稱點P為點M、N的“和諧點”.(1)已知點A的坐標(biāo)為,①若點B的坐標(biāo)為,在直線AB的上方,存在點A,B的“和諧點”C,直接寫出點C的坐標(biāo);②點C在直線x=5上,且點C為點A,B的“和諧點”,求直線AC的表達(dá)式.(2)⊙O的半徑為r,點為點、的“和諧點”,且DE=2,若使得與⊙O有交點,畫出示意圖直接寫出半徑r的取值范圍.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】∵四邊形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故選D.【點睛】本題主要考查了旋轉(zhuǎn)、相似等知識,解題的關(guān)鍵是根據(jù)已知得出△ACG∽△ADH.2、C【解析】
運用配方法解方程即可.【詳解】解:x2+2x﹣15=x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故選擇C.【點睛】本題考查了解一元二次方程,選擇合適的解方程方法是解題關(guān)鍵.3、C【解析】分析:由A、B、C三點表示的數(shù)之間的關(guān)系結(jié)合三點在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結(jié)合a、b、c間的關(guān)系即可求出a、b、c的值,由此即可得出結(jié)論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點O介于B、C點之間.故選C.點睛:本題考查了數(shù)值以及絕對值,解題的關(guān)鍵是確定a、b、c的值.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)數(shù)軸上點的位置關(guān)系分別找出各點代表的數(shù)是關(guān)鍵.4、C【解析】試題分析:=,∴點M(m,﹣m2﹣1),∴點M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故選C.考點:二次函數(shù)的性質(zhì).5、D【解析】因為=,所以的倒數(shù)是.故選D.6、B【解析】試題分析:∵,即x2+4x=4,∴原式=3(x=-3x2-12x+18考點:整式的混合運算—化簡求值;整體思想;條件求值.7、C【解析】
根據(jù)DE∥AB可求得∠CDE=∠B解答即可.【詳解】解:∵DE∥AB,∴∠CDE=∠B=46°,故選:C.【點睛】本題主要考查平行線的性質(zhì):兩直線平行,同位角相等.快速解題的關(guān)鍵是牢記平行線的性質(zhì).8、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設(shè)OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標(biāo),結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標(biāo)為(35a,4∵點A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標(biāo)為(10+35b,4∵點F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA9、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根據(jù)三角形內(nèi)角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,從而求出∠D.詳解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故選B.點睛:此題考查的是平行線的性質(zhì)及三角形內(nèi)角和定理,解題的關(guān)鍵是先根據(jù)平行線的性質(zhì)求出∠C,再由CD=CE得出∠D=∠CED,由三角形內(nèi)角和定理求出∠D.10、B【解析】
將k看做已知數(shù)求出用k表示的x與y,代入2x+3y=6中計算即可得到k的值.【詳解】解:,①②得:,即,將代入①得:,即,將,代入得:,解得:.故選:.【點睛】此題考查了二元一次方程組的解,以及二元一次方程的解,方程的解即為能使方程左右兩邊成立的未知數(shù)的值.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
根據(jù)題目中的程序可以分別計算出y2和yn,從而可以解答本題.【詳解】∵y1=,∴y2===,y3=,……yn=.故答案為:.【點睛】本題考查了分式的混合運算,解答本題的關(guān)鍵是明確題意,用代數(shù)式表示出相應(yīng)的y2和yn.12、【解析】
連接OC,OD,OC與AD交于點E,根據(jù)圓周角定理有根據(jù)垂徑定理有:解直角即可.【詳解】連接OC,OD,OC與AD交于點E,直尺的寬度:故答案為【點睛】考查垂徑定理,熟記垂徑定理是解題的關(guān)鍵.13、【解析】
將點的坐標(biāo)代入,可以得到-1=,然后解方程,便可以得到k的值.【詳解】∵反比例函數(shù)y=的圖象經(jīng)過點(2,-1),
∴-1=
∴k=?;
故答案為k=?.【點睛】本題主要考查函數(shù)圖像上的點滿足其解析式,可以結(jié)合代入法進(jìn)行解答14、(寫出一個即可)【解析】【分析】根據(jù)點到x軸的距離即點的縱坐標(biāo)的絕對值,點到y(tǒng)軸的距離即點的橫坐標(biāo)的絕對值,進(jìn)行求解即可.【詳解】設(shè)P(x,y),根據(jù)題意,得|x|=2,|y|=1,即x=±2,y=±1,則點P的坐標(biāo)有(2,1),(2,-1),(-2,1),(2,-1),故答案為:(2,1),(2,-1),(-2,1),(2,-1)(寫出一個即可).【點睛】本題考查了點的坐標(biāo)和點到坐標(biāo)軸的距離之間的關(guān)系.熟知點到x軸的距離即點的縱坐標(biāo)的絕對值,點到y(tǒng)軸的距離即點的橫坐標(biāo)的絕對值是解題的關(guān)鍵.15、-3【解析】設(shè)A(a,a+4),B(c,c+4),則解得:x+4=,即x2+4x?k=0,∵直線y=x+4與雙曲線y=相交于A、B兩點,∴a+c=?4,ac=-k,∴(c?a)2=(c+a)2?4ac=16+4k,∵AB=,∴由勾股定理得:(c?a)2+[c+4?(a+4)]2=()2,2(c?a)2=8,(c?a)2=4,∴16+4k=4,解得:k=?3,故答案為?3.點睛:本題考查了一次函數(shù)與反比例函數(shù)的交點問題、根與系數(shù)的關(guān)系、勾股定理、圖象上點的坐標(biāo)特征等,題目具有一定的代表性,綜合性強(qiáng),有一定難度.16、1【解析】解:∵DE是AB的垂直平分線,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案為1.點睛:本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),30°角所對的直角邊等于斜邊的一半的性質(zhì),熟記性質(zhì)是解答本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)甲種材料每千克25元,乙種材料每千克35元.(2)共有四種方案;(3)生產(chǎn)A產(chǎn)品21件,B產(chǎn)品39件成本最低.【解析】試題分析:(1)、首先設(shè)甲種材料每千克x元,乙種材料每千克y元,根據(jù)題意列出二元一次方程組得出答案;(2)、設(shè)生產(chǎn)B產(chǎn)品a件,則A產(chǎn)品(60-a)件,根據(jù)題意列出不等式組,然后求出a的取值范圍,得出方案;得出生產(chǎn)成本w與a的函數(shù)關(guān)系式,根據(jù)函數(shù)的增減性得出答案.試題解析:(1)設(shè)甲種材料每千克x元,乙種材料每千克y元,依題意得:x+y=602y+3y=155解得:答:甲種材料每千克25元,乙種材料每千克35元.(2)生產(chǎn)B產(chǎn)品a件,生產(chǎn)A產(chǎn)品(60-a)件.依題意得:(25×4+35×1)(60-a)+(35×3+25×3)a≤10000a>38解得:∵a的值為非負(fù)整數(shù)∴a=39、40、41、42∴共有如下四種方案:A種21件,B種39件;A種20件,B種40件;A種19件,B種41件;A種18件,B種42件(3)、答:生產(chǎn)A產(chǎn)品21件,B產(chǎn)品39件成本最低.設(shè)生產(chǎn)成本為W元,則W與a的關(guān)系式為:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500∵k=55>0∴W隨a增大而增大∴當(dāng)a=39時,總成本最低.考點:二元一次方程組的應(yīng)用、不等式組的應(yīng)用、一次函數(shù)的應(yīng)用.18、(1);y2=2250x;(2)甲、乙兩個商場的收費相同時,所買商品為6件;(3)所買商品為5件時,應(yīng)選擇乙商場更優(yōu)惠.【解析】試題分析:(1)由兩家商場的優(yōu)惠方案分別列式整理即可;(2)由收費相同,列出方程求解即可;(3)由函數(shù)解析式分別求出x=5時的函數(shù)值,即可得解試題解析:(1)當(dāng)x=1時,y1=3000;當(dāng)x>1時,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+1.∴;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)當(dāng)甲、乙兩個商場的收費相同時,2100x+1=2250x,解得x=6,答:甲、乙兩個商場的收費相同時,所買商品為6件;(3)x=5時,y1=2100x+1=2100×5+1=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所買商品為5件時,應(yīng)選擇乙商場更優(yōu)惠.考點:一次函數(shù)的應(yīng)用19、(1)反比例函數(shù)解析式為y=﹣,一次函數(shù)的解析式為y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】試題分析:(1)先把點A的坐標(biāo)代入反比例函數(shù)解析式,即可得到m=﹣8,再把點B的坐標(biāo)代入反比例函數(shù)解析式,即可求出n=1,然后利用待定系數(shù)法確定一次函數(shù)的解析式;(1)先求出直線y=﹣x﹣1與x軸交點C的坐標(biāo),然后利用S△AOB=S△AOC+S△BOC進(jìn)行計算;(3)觀察函數(shù)圖象得到當(dāng)x<﹣4或0<x<1時,一次函數(shù)的圖象在反比例函數(shù)圖象上方,據(jù)此可得不等式的解集.試題解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函數(shù)解析式為,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函數(shù)的解析式為y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,則x=﹣1,即直線y=﹣x﹣1與x軸交于點C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由圖可得,不等式的解集為:x<﹣4或0<x<1.考點:反比例函數(shù)與一次函數(shù)的交點問題;待定系數(shù)法求一次函數(shù)解析式.20、(1)證明見解析;(2)S平行四邊形ABCD=3.【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根據(jù)平行線的判定得出AD∥BC,根據(jù)平行四邊形的判定推出即可;(2)證明△ABE是等邊三角形,得出AE=AB=2,由直角三角形的性質(zhì)求出CE和DE,得出AC的長,即可求出四邊形ABCD的面積.試題解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四邊形ABCD是平行四邊形;(2)∵sin∠ACD=,∴∠ACD=60°,∵四邊形ABCD是平行四邊形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE是等邊三角形,∴AE=AB=2,∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE=CD=1,∴DE=CE=,AC=AE+CE=3,∴S平行四邊形ABCD=2S△ACD=AC?DE=3.21、可以求出A、B之間的距離為111.6米.【解析】
根據(jù),(對頂角相等),即可判定,根據(jù)相似三角形的性質(zhì)得到,即可求解.【詳解】解:∵,(對頂角相等),∴,∴,∴,解得米.所以,可以求出、之間的距離為米【點睛】考查相似三角形的應(yīng)用,掌握相似三角形的判定方法和性質(zhì)是解題的關(guān)鍵.22、【解析】分析:列表得出所有等可能的情況數(shù),找出兩次都摸到紅球的情況數(shù),即可求出所求的概率.詳解:列表如下:紅紅白黑紅﹣﹣﹣(紅,紅)(白,紅)(黑,紅)紅(紅,紅)﹣﹣﹣(白,紅)(黑,紅)白(紅,白)(紅,白)﹣﹣﹣(黑,白)黑(紅,黑)(紅,黑)(白,黑)﹣﹣﹣所有等可能的情況有12種,其中兩次都摸到紅球有2種可能,則P(兩次摸到紅球)==.點睛:此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年酒籃子項目投資價值分析報告
- 2025至2030年液體分樣器項目投資價值分析報告
- 2025至2030年工程承包項目投資價值分析報告
- 三年級數(shù)學(xué)(上)計算題專項練習(xí)附答案
- 藥店裝修管理協(xié)議
- 超市消防設(shè)施居間服務(wù)合同
- 珠寶店裝修質(zhì)保承諾函
- 特色小吃店改造協(xié)議范例
- 校園裝修安全協(xié)議書
- 2024年度浙江省公共營養(yǎng)師之四級營養(yǎng)師押題練習(xí)試題A卷含答案
- 立項報告蓋章要求
- 2022年睪丸腫瘤診斷治療指南
- 被執(zhí)行人給法院執(zhí)行局寫申請范本
- 主變壓器試驗報告模板
- 安全防護(hù)通道施工方案
- 視覺元素對心理感知的影響
- 飯店管理基礎(chǔ)知識(第三版)中職PPT完整全套教學(xué)課件
- 柴油供貨運輸服務(wù)方案
- 110應(yīng)急聯(lián)動預(yù)案
- 光伏發(fā)電監(jiān)理規(guī)劃
- 清洗劑msds清洗劑MSDS
評論
0/150
提交評論