版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第十三章熱力學(xué)基礎(chǔ)
13-1如圖所示,bca為理想氣體絕熱過(guò)程,bla和b2a是任意過(guò)程,
則上述兩過(guò)程中氣體作功與吸收熱量的情況是()
(A)bla過(guò)程放熱,作負(fù)功;b2a過(guò)程放熱,作負(fù)功
(B)bla過(guò)程吸熱,作負(fù)功;b2a過(guò)程放熱,作負(fù)功
(C)bla過(guò)程吸熱,作正功;b2a過(guò)程吸熱,作負(fù)功
(D)bla過(guò)程放熱,作正功;b2a過(guò)程吸熱,作正功
b
OV
題13-1圖
分析與解bca,bla和b2a均是外界壓縮系統(tǒng),由卬=JpdV知系統(tǒng)經(jīng)這
三個(gè)過(guò)程均作負(fù)功,因而(C)、(D)不對(duì).理想氣體的內(nèi)能是溫度的單值函數(shù),
因此三個(gè)過(guò)程初末態(tài)內(nèi)能變化相等,設(shè)為AE.對(duì)絕熱過(guò)程bca,由熱力學(xué)第?
定律知AE=-Wbca.另外,由圖可知:IWb2aI>IWbcaI>IWMaI,
則Wb2a<Wbca<Wbla.對(duì)bla過(guò)程:Q=AE+Wbla>AE+Wbca=0是
吸熱過(guò)程.而對(duì)b2a過(guò)程:Q=AE+Wb2a<AE+Wbca-0是放熱過(guò)程.
可見(jiàn)(A)不對(duì),正確的是(B).
13-2如圖,?定量的理想氣體,由平衡態(tài)A變到平衡態(tài)B,且它們的壓
強(qiáng)相等,即PA=PB,請(qǐng)問(wèn)在狀態(tài)A和狀態(tài)B之間,氣體無(wú)論經(jīng)過(guò)的是什么過(guò)程,
氣體必然()
(A)對(duì)外作正功(B)內(nèi)能增加
(C)從外界吸熱(D)向外界放熱
p
??
AB
OV
題13-2圖
分析與解由p-V圖可知,PAVA<PBVB,即知TA<TB,則對(duì)一定量理
想氣體必有EB>EA.即氣體由狀態(tài)A變化到狀態(tài)B,內(nèi)能必增加.而作功、熱傳
遞是過(guò)程量,將與具體過(guò)程有關(guān).所以(A)、(C)、(D)不是必然結(jié)果,只有(B)
正確.
13-3兩個(gè)相同的剛性容器,一個(gè)盛有氫氣,一個(gè)盛氧氣(均視為剛性分
子理想氣體).開(kāi)始時(shí)它們的壓強(qiáng)和溫度都相同,現(xiàn)將3J熱量傳給氫氣,使之
升高到一定的溫度.若使氫氣也升高同樣的溫度,則應(yīng)向氫氣傳遞熱量為
()
(A)6J(B)3J(C)5J(D)10J
分析與解當(dāng)容器體積不變,即為等體過(guò)程時(shí)系統(tǒng)不作功,根據(jù)熱力學(xué)第一
>77I
定律Q=AE+W,有Q=AE.而由理想氣體內(nèi)能公式△£=——RAT,
M2
可知欲使氫氣和氫氣升高相同溫度,須傳遞的熱量
(m)
QH,:QH..=—/.再由理想氣體物態(tài)方程pV=mMRT,
JMIIJ~/VJTTJ
\H2/\Hc/
初始時(shí),氫氣和氮?dú)馐蔷哂邢嗤臏囟取簭?qiáng)和體積,因而物質(zhì)的量相同,
則。也:。&=5/3.因此正確答案為(C).
13-4有人想像了四個(gè)理想氣體的循環(huán)過(guò)程,則在理論上可以實(shí)現(xiàn)的為
(A)(B)
(C)(D)
題13-4圖
分析與解由絕熱過(guò)程方程pVy=常量,以及等溫過(guò)程方程pV=常量,可
知絕熱線(xiàn)比等溫線(xiàn)要陡,所以(A)過(guò)程不對(duì),(B)、(C)過(guò)程中都有兩條絕熱
線(xiàn)相交于一點(diǎn),這是不可能的.而且(B)過(guò)程的循環(huán)表明系統(tǒng)從單一熱源吸熱
且不引起外界變化,使之全部變成有用功,違反了熱力學(xué)第二定律.因此只
有(D)正確.
13-5一臺(tái)工作于溫度分別為327℃和27℃的高溫?zé)嵩磁c低溫源之間的
卡諾熱機(jī),每經(jīng)歷一個(gè)循環(huán)吸熱2000J,則對(duì)外作功()
(A)2000J(B)1000J(C)4000J(D)500J
分析與解熱機(jī)循環(huán)效率q=W/Q%對(duì)卡諾機(jī),其循環(huán)效率又可表為:t]
,則由限可求答案.正確答案為
=1—T2/T1W/Q=1-T2/TI(B).
13-6根據(jù)熱力學(xué)第二定律()
(A)自然界中的一切自發(fā)過(guò)程都是不可逆的
(B)不可逆過(guò)程就是不能向相反方向進(jìn)行的過(guò)程
(C)熱量可以從高溫物體傳到低溫物體,但不能從低溫物體傳到高溫物體
(D)任何過(guò)程總是沿著嫡增加的方向進(jìn)行
分析與解對(duì)選項(xiàng)(B):不可逆過(guò)程應(yīng)是指在不引起其他變化的條件下,不
能使逆過(guò)程重復(fù)正過(guò)程的每一狀態(tài),或者雖然重復(fù)但必然會(huì)引起其他變化的
過(guò)程.對(duì)選項(xiàng)(C):應(yīng)是熱量不可能從低溫物體自動(dòng)傳到高溫物體而不引起外
界的變化.對(duì)選項(xiàng)(D):缺少了在孤立系統(tǒng)中這?前提條件.只有選項(xiàng)(A)正確.
13-7位于委內(nèi)瑞拉的安赫爾瀑布是世界上落差最大的瀑布,它高979m.
如果在水下落的過(guò)程中,重力對(duì)它所作的功中有50%轉(zhuǎn)換為熱量使水溫升
高,求水由瀑布頂部落到底部而產(chǎn)生的溫差.(水的比熱容c為4.18x103Jkg」
1。)
分析取質(zhì)量為,〃的水作為研究對(duì)象,水從瀑布頂部下落到底部過(guò)程中重
力作功W=mgh,按題意,被水吸收的熱量Q=0.5W,則水吸收熱量后升
高的溫度可由Q—meAT求得.
解由上述分析得
mcAT=0.5mgh
水下落后升高的溫度
AT=0.5gh/c=1.15K
13-8如圖所示,一定量的空氣,開(kāi)始在狀態(tài)A,其壓強(qiáng)為2.0xl05Pa,
體積為2.0xi(F3m3,沿直線(xiàn)AB變化到狀態(tài)B后,壓強(qiáng)變?yōu)?.0xKPPa,體
積變?yōu)?.0xl(F3m3,求此過(guò)程中氣體所作的功.
p/105Pa
題13-8圖
分析理想氣體作功的表達(dá)式為W=Jp(V)dV.功的數(shù)值就等于p-V圖
中過(guò)程曲線(xiàn)下所對(duì)應(yīng)的面積.
解SABCD=1/2(BC+AD)XCD
故W=150J
13-9汽缸內(nèi)儲(chǔ)有2.0mol的空氣,溫度為27°C,若維持壓強(qiáng)不變,而使
空氣的體積膨脹到原體積的3s倍,求空氣膨脹時(shí)所作的功.
分析本題是等壓膨脹過(guò)程,氣體作功W=,pdV=p(匕-乂),其中壓
強(qiáng)p可通過(guò)物態(tài)方程求得.
解根據(jù)物態(tài)方程pK=OR7;,汽缸內(nèi)氣體的壓強(qiáng)p=?RTJK,則作功為
3
W=p(匕一匕)=VRT](v2-匕)/匕=2uRT\=9.97xlOJ
13-10-定量的空氣,吸收了1.71X103J的熱量,并保持在1.0xi()5PaF
膨脹,體積從1.0xl(F2m3增加到1.5x1。-2m3,問(wèn)空氣對(duì)外作了多少功?它
的內(nèi)能改變了多少?
分析由于氣體作等壓膨脹,氣體作功可直接由W=p(V2一%)求得.取該
空氣為系統(tǒng),根據(jù)熱力學(xué)第一定律Q=AE+W可確定它的內(nèi)能變化.在計(jì)
算過(guò)程中要注意熱量、功、內(nèi)能的正負(fù)取值.
解該空氣等壓膨脹,對(duì)外作功為
W=p(W—匕)=5.0xl02j
其內(nèi)能的改變?yōu)?/p>
Q=AE+W=1.21xl03j
13-110.1kg的水蒸氣自120℃加熱升溫到140℃,問(wèn)⑴在等體過(guò)程中;
(2)在等壓過(guò)程中,各吸收了多少熱量?根據(jù)實(shí)驗(yàn)測(cè)定,已知水蒸氣的摩
爾定壓熱容Cp,m=36.21J-moHK-i,摩爾定容熱容Cv,m=27.82JmoHKL
分析由量熱學(xué)知熱量的計(jì)算公式為Q=vC,^T.按熱力學(xué)第一定律,在等
體過(guò)程中,Q、=\E=PCJ4;在等壓過(guò)程中,
解(1)在等體過(guò)程中吸收的熱量為
,3
2v=A^=—CVmA7=3.1xlOJ
M,
(2)在等壓過(guò)程中吸收的熱量為
3
QP=JpdV+AE=獷,現(xiàn)-T,)=4.OX1OJ
13-12如圖所示,在絕熱壁的汽缸內(nèi)盛有l(wèi)mol的氮?dú)?,活塞外為大?
氮?dú)獾膲簭?qiáng)為1.51X105Pa,活塞面積為0.02m2.從汽缸底部加熱,使活塞緩
慢上升了0.5m.問(wèn)(1)氣體經(jīng)歷了什么過(guò)程?(2)汽缸中的氣體吸收了多少
熱量?(根據(jù)實(shí)驗(yàn)測(cè)定,已知氮?dú)獾哪柖▔簾崛軨p.m=29.12Jmoli-K
i,摩爾定容熱容Cv,m=20.80J-mol-i-K-i)
0.5m
題13-12圖
分析因活塞可以自由移動(dòng),活塞對(duì)氣體的作用力始終為大氣壓力和活塞重
力之和.容器內(nèi)氣體壓強(qiáng)將保持不變.對(duì)等壓過(guò)程,吸熱Qp=uCpmAT.AT
可由理想氣體物態(tài)方程求出.
解(1)由分析可知?dú)怏w經(jīng)歷了等壓膨脹過(guò)程.
⑵吸熱Qp=oCpnAT?其中y=1mol,CP,m=29.12Jmoli-Ki.由理
想氣體物態(tài)方程pV=vRT,得
AT=(p2V2-piVi)/R=p(V2-VA)/R=pS-Al/R
3
貝Qp=CvmpSASAl=5.29x10J
13-13-壓強(qiáng)為1.0xKPPa,體積為1.0xi(T3m3的氧氣自(ye加熱到100。
問(wèn):(1)當(dāng)壓強(qiáng)不變時(shí),需要多少熱量?當(dāng)體積不變時(shí),需要多少熱量?(2)在
等壓或等體過(guò)程中各作了多少功?
分析(1)求Qp和Qv的方法與題13-11相同.(2)求過(guò)程的作功通常有兩個(gè)
途徑.①利用公式卬=Jp(V)dV;②利用熱力學(xué)第一定律去求解.在本題
中,熱量Q已求出,而內(nèi)能變化可由Qv=AE=oCv,m伉一天)得到?從而
可求得功W.
解根據(jù)題給初態(tài)條件得氧氣的物質(zhì)的量為
v=—=pyjRTx=4.41x10-2mo]
75
氧氣的摩爾定壓熱容Cp.m,摩爾定容熱容Cv.m=-R-
(1)求Qp、Qv
等壓過(guò)程氧氣(系統(tǒng))吸熱
4=JpdV+AE=vCpjT2一Tj=128.1J
等體過(guò)程氧氣(系統(tǒng))吸熱
Qv=AE=oCv,m(芍-4)=9L5J
(2)按分析中的兩種方法求作功值
解1①利用公式W=jp(V)dV求解.在等壓過(guò)程中,
m
dW=pdV=—RdT,則得
M
叫=IdW=P—7?dT=36.6J
上M
而在等體過(guò)程中,因氣體的體積不變,故作功為
Wv=jp(V)dV=O
②利用熱力學(xué)第一定律Q=AE+W求解.氧氣的內(nèi)能變化為
Qv=AE=/Cv,m億一()=9L5J
由于在(1)中已求出Qp與Qv,則由熱力學(xué)第一定律可得在等壓過(guò)程、
等體過(guò)程中所作的功分別為
Wp=&-AE=36.6J
Wv=Qv_AE=O
13-14如圖所示,系統(tǒng)從狀態(tài)A沿ABC變化到狀態(tài)C的過(guò)程中,外界有
326J的熱量傳遞給系統(tǒng),同時(shí)系統(tǒng)對(duì)外作功126J.當(dāng)系統(tǒng)從狀態(tài)C沿另一曲線(xiàn)
CA返回到狀態(tài)A時(shí),外界對(duì)系統(tǒng)作功為52J,則此過(guò)程中系統(tǒng)是吸熱還是放
熱?傳遞熱量是多少?
題13-14圖
分析已知系統(tǒng)從狀態(tài)C到狀態(tài)A,外界對(duì)系統(tǒng)作功為叫A,如果再能知
道此過(guò)程中內(nèi)能的變化AEAC,則由熱力學(xué)第一定律即可求得該過(guò)程中系統(tǒng)
傳遞的熱量QCA.由于理想氣體的內(nèi)能是狀態(tài)(溫度)的函數(shù),利用題中給出的
ABC過(guò)程吸熱、作功的情況,由熱力學(xué)第一定律即可求得由A至C過(guò)程中
系統(tǒng)內(nèi)能的變化AEAC,而AEAC=-AEAC,故可求得QCA.
解系統(tǒng)經(jīng)ABC過(guò)程所吸收的熱量及對(duì)外所作的功分別為
QABC=326J,WABC=126J
則山熱力學(xué)第一定律可得由A到C過(guò)程中系統(tǒng)內(nèi)能的增量
AEAC—QABC-WABC—200J
由此可得從C到A,系統(tǒng)內(nèi)能的增量為
AECA=-200J
從C到A,系統(tǒng)所吸收的熱量為
QCA=AECA=-252J
式中負(fù)號(hào)表示系統(tǒng)向外界放熱252J.這里要說(shuō)明的是由于CA是一未知過(guò)程,
上述求出的放熱是過(guò)程的總效果,而對(duì)其中每一微小過(guò)程來(lái)講并不一定都是
放熱.
13-15如圖所示,一定量的理想氣體經(jīng)歷ACB過(guò)程時(shí)吸熱700J,則經(jīng)歷
ACBDA過(guò)程時(shí)吸熱又為多少?
分析從圖中可見(jiàn)ACBDA過(guò)程是一個(gè)循環(huán)過(guò)程.由于理想氣體系統(tǒng)經(jīng)歷一
個(gè)循環(huán)的內(nèi)能變化為零,故根據(jù)熱力學(xué)第一定律,循環(huán)系統(tǒng)凈吸熱即為外界
對(duì)系統(tǒng)所作的凈功.為了求得該循環(huán)過(guò)程中所作的功,可將ACBDA循環(huán)過(guò)程
分成ACB、BD及DA三個(gè)過(guò)程討論.其中BD及DA分別為等體和等壓過(guò)程,
過(guò)程中所作的功按定義很容易求得;而ACB過(guò)程中所作的功可根據(jù)上題同
樣的方法利用熱力學(xué)第一定律去求.
解由圖中數(shù)據(jù)有PAVA=PBVB,則A、B兩狀態(tài)溫度相同,故ACB過(guò)程內(nèi)能
的變化AECAB=0,由熱力學(xué)第一定律可得系統(tǒng)對(duì)外界作功
WCAB=QCAB-AECAB=QCAB=700J
在等體過(guò)程BD及等壓過(guò)程DA中氣體作功分別為
%=於封=0
%A==%)=—1200J
則在循環(huán)過(guò)程ACBDA中系統(tǒng)所作的總功為
W=%CB+%D+WDA=-500J
負(fù)號(hào)表示外界對(duì)系統(tǒng)作功.由熱力學(xué)第一定律可得,系統(tǒng)在循環(huán)中吸收的總
熱量為
。=w=-500J
負(fù)號(hào)表示在此過(guò)程中,熱量傳遞的總效果為放熱.
13-16在溫度不是很低的情況下,許多物質(zhì)的摩爾定壓熱容都可以用下
式表示
2
Cpm=a+2bT-cT-
式中n、b和c是常量,T是熱力學(xué)溫度.求:。)在恒定壓強(qiáng)下,1mol物
質(zhì)的溫度從T1升高到T2時(shí)需要的熱量;(2)在溫度Ti和72之間的平均摩爾
熱容;(3)對(duì)鎂這種物質(zhì)來(lái)說(shuō),若Cp.m的單位為JmoriKF,則2=
25.7J-mol-i-K-i,b=3.13xKPjmoHKZc=3.27xlQ5JmoriK計(jì)算鎂
在300K時(shí)的摩爾定壓熱容Cp,m,以及在200K和400K之間Cp,m的平均值.
分析由題目知摩爾定壓熱容Cp,m隨溫度變化的函數(shù)關(guān)系,則根據(jù)積分式
QP=,CpmdT即可求得在恒定壓強(qiáng)下,Imol物質(zhì)從Ti升高到72所吸收
的熱量Qp.故溫度在Ti至T2之間的平均摩爾熱容Cpm=0/(72-4)?
解(1)11mol物質(zhì)從石升高到T2時(shí)吸熱為
2P=及^仃=「(4+2仃一。廠217
=?!?])+毗2—邛)+4寫(xiě)|_')
(2)在Ti和72間的平均摩爾熱容為
C.m=Qp/(A—Tj=a(T2+T)—“TH
(3)鎂在T=300K時(shí)的摩爾定壓熱容為
C;m=a+2M'-cL=23.9J.molLK」
鎂在200K和400K之間Cp.m的平均值為
1
Cpm=a(7;+7;)-c/7;7;=23.5J-mol'-K-
13-17空氣由壓強(qiáng)為1.52x105Pa,體積為5.0x1。-3m3,等溫膨脹到壓強(qiáng)
為1.01X105Pa,然后再經(jīng)等壓壓縮到原來(lái)的體積.試計(jì)算空氣所作的功.
解空氣在等溫膨脹過(guò)程中所作的功為
購(gòu)=2RTJn化g)=PMln(p1/p2)
空氣在等壓壓縮過(guò)程中所作的功為
卬=JpdV=〃化_匕)
利用等溫過(guò)程關(guān)系piV!=P2v2,則空氣在整個(gè)過(guò)程中所作的功為
V
W=WP+WT=PMln(P]/%)+?2I-PM
=55.7J
13-18如圖所示,使lmol氧氣(1)由A等溫地變到B;(2)由A等體地
變到C,再由C等壓地變到B.試分別計(jì)算氧氣所作的功和吸收的熱量.
題13-18圖
分析從p-V圖(也稱(chēng)示功圖)上可以看出,氧氣在AB與ACB兩個(gè)過(guò)程
中所作的功是不同的,其大小可通過(guò)W=Jp(V)dV求出.考慮到內(nèi)能是狀態(tài)
的函數(shù),其變化值與過(guò)程無(wú)關(guān),所以這兩個(gè)不同過(guò)程的內(nèi)能變化是相同的,
而且因初、末狀態(tài)溫度相同TA=TB,故AE=0,利用熱力學(xué)第一定律Q=
W+AE,可求出每一過(guò)程所吸收的熱量.
解(1)沿AB作等溫膨脹的過(guò)程中,系統(tǒng)作功
3
=£RTJn億/匕)=4匕l(fā)n(Vfi/Vj=2.77xlOJ
M
由分析可知在等溫過(guò)程中,氧氣吸收的熱量為
(2AB=WAB=2.77xl03J
(2)沿A到C再到B的過(guò)程中系統(tǒng)作功和吸熱分別為
WACB=WAC+WCB=WCB=PC(VB-Vc)=2.0X1Q3J
QACB=WACB=2.0X103J
13-19將體積為1.0xlO-W、壓強(qiáng)為1.01xl05pa的氫氣絕熱壓縮,使
其體積變?yōu)?.0xiO-5m3,求壓縮過(guò)程中氣體所作的功.(氫氣的摩爾定壓熱
容與摩爾定容熱容比值y=L41)
分析可采用題13—13中氣體作功的兩種計(jì)算方法.(1)氣體作功可由積分
W=JpdV求解,其中函數(shù)p(V)可通過(guò)絕熱過(guò)程方程pH"=C得出.⑵因
為過(guò)程是絕熱的,故Q=0,因此,有囚=一4七;而系統(tǒng)內(nèi)能的變化可由系
統(tǒng)的始末狀態(tài)求出.
解根據(jù)上述分析,這里采用方法⑴求解,方法(2)留給讀者試解.設(shè)p、V分別
為絕熱過(guò)程中任一狀態(tài)的壓強(qiáng)和體積,則由得
P=PW
氫氣絕熱壓縮作功為
W=Jpdv=Pp.V/V^'dVP匕=-23.0J
i-y
13-20試驗(yàn)用的火炮炮筒長(zhǎng)為3.66m,內(nèi)膛直徑為0.152m,炮彈質(zhì)量為
45.4kg,擊發(fā)后火藥爆燃完全時(shí)炮彈已被推行0.98m,速度為311ms-i,
這時(shí)膛內(nèi)氣體壓強(qiáng)為2.43xlO8Pa.設(shè)此后膛內(nèi)氣體做絕熱膨脹,直到炮彈出口.
求(1)在這一絕熱膨脹過(guò)程中氣體對(duì)炮彈作功多少?設(shè)摩爾定壓熱容與摩
爾定容熱容比值為/=1.2.(2)炮彈的出口速度(忽略摩擦).
分析(1)氣體絕熱膨脹作功可由公式w=fpdv=PM—。?匕計(jì)算.由
Jy-1
題中條件可知絕熱膨脹前后氣體的體積Vi和V2,因此只要通過(guò)絕熱過(guò)程方
程=P2匕'求出絕熱膨脹后氣體的壓強(qiáng)就可求出作功值?(2)在忽略摩
擦的情況下,可認(rèn)為氣體所作的功全部用來(lái)增加炮彈的動(dòng)能.由此可得到炮
彈速度.
解由題設(shè)7=3.66m,D=0.152m,加=45.4kg,八=0.98m,oi=311ms-i,
pi=2.43xlO8Pa,y=1.2.
(1)炮彈出口時(shí)氣體壓強(qiáng)為
p2=P1化/匕y=Pi(4〃y=5.00x107Pa
氣體作功
w=fpdV=PM—P2匕=皿-P必nD:=500xl06J
Jy-1y-14
(2)根據(jù)分析W=^mv2~^mVj,貝U
v=Q2W/m+痔=563m-s-1
13-21lmol氫氣在溫度為300K,體積為0.025m3的狀態(tài)下,經(jīng)過(guò)⑴
等壓膨脹,(2)等溫膨脹,(3)絕熱膨脹.氣體的體積都變?yōu)樵瓉?lái)的兩倍.試分別
計(jì)算這三種過(guò)程中氫氣對(duì)外作的功以及吸收的熱量.
題13-21圖
分析這三個(gè)過(guò)程是教材中重點(diǎn)討論的過(guò)程.在p—1/圖上,它們的過(guò)程曲
線(xiàn)如圖所示.由圖可知過(guò)程(1)作功最多,過(guò)程(3)作功最少.溫度TB>TC
>TD,而過(guò)程(3)是絕熱過(guò)程,因此過(guò)程⑴和⑵均吸熱,且過(guò)程(1)吸熱多.
具體計(jì)算時(shí)只需直接代有關(guān)公式即可.
解(1)等壓膨脹
匕=幺0-匕)=苧0-匕)=肛=2.49xlO3J
Q?=%,+/E=?CpD=3TA=8.73X1O3J
(2)等溫膨脹
WT^vRTlnVc/VA=R7;In2=1.73x103j
對(duì)等溫過(guò)程AE=0,所以Qr=WT=1.73x103j
(3)絕熱膨脹
TD=TA(VA/VD)Y^=300X(0.5)°-4=227.4K
對(duì)絕熱過(guò)程2=0,則有
-=-AE=嗚/F)=竽億-7^)=1.51xl03J
13-22絕熱汽缸被一不導(dǎo)熱的隔板均分成體積相等的A、B兩室,隔板
可無(wú)摩擦地平移,如圖所示.A、B中各有l(wèi)mol氮?dú)猓鼈兊臏囟榷际荰O,
體積都是V0.現(xiàn)用A室中的電熱絲對(duì)氣體加熱,平衡后A室體積為B室的
兩倍,試求(1)此時(shí)A、B兩室氣體的溫度;(2)A中氣體吸收的熱量.
題13-22圖
分析(1)B室中氣體經(jīng)歷的是一個(gè)絕熱壓縮過(guò)程,遵循絕熱方程TVY-1
=常數(shù),由此可求出B中氣體的末態(tài)溫度TB.又由于A、B兩室中隔板可無(wú)
摩擦平移,故A、B兩室等壓.則由物態(tài)方程pVA=VRTA和p3=VRTB可
知TA=2TB.
(2)欲求A室中氣體吸收的熱量,我們可以有兩種方法.方法一:視A、B為
整體,那么系統(tǒng)(汽缸)對(duì)外不作功,吸收的熱量等于系統(tǒng)內(nèi)能的增量.即QA
=AEA+AEB.方法二:A室吸熱一方面提高其內(nèi)能AEA,另外對(duì)"外界"B室作
功WA.而對(duì)B室而言,由于是絕熱的,"外界”對(duì)它作的功就全部用于提高
系統(tǒng)的內(nèi)能AEB.因而在數(shù)值上WA="B.同樣得到QA=AEA+AEB.
解設(shè)平衡后A、B中氣體的溫度、體積分別為T(mén)A,TB和VA,VB.而由分
匕=2%匕=4%/3
析知壓強(qiáng)PA=PB=P.由題已知“
匕+匕=2匕%=2%/3
⑴根據(jù)分析,對(duì)B室有嗎-冗
得。=(%/匕尸"=1176小TA=TB=2.353T0
(2)0=g+g=爭(zhēng)1")+學(xué)伉-")=31九
13-230.32kg的氧氣作如圖所示的ABCDA循環(huán),Vi=2V1,T[=300K,
T2=200K,求循環(huán)效率.
題13-23圖
分析該循環(huán)是正循環(huán).循環(huán)效率可根據(jù)定義式〃=W/Q來(lái)求出,其中W表
示一個(gè)循環(huán)過(guò)程系統(tǒng)作的凈功,Q為循環(huán)過(guò)程系統(tǒng)吸收的總熱量.
解根據(jù)分析,因AB、CD為等溫過(guò)程,循環(huán)過(guò)程中系統(tǒng)作的凈功為
卬=%3+卬。=/卡/也僅/匕)
=—T,抽僅/匕)=5.76x1O'J
M
由于吸熱過(guò)程僅在等溫膨脹(對(duì)應(yīng)于AB段)和等體升壓(對(duì)應(yīng)于DA段)中
發(fā)生,而等溫過(guò)程中AE=O,則。鉆=%8?等體升壓過(guò)程中囚=°,則
0桃=△£",所以,循環(huán)過(guò)程中系統(tǒng)吸熱的總量為
Q~QAB+QDA~匕B+AEZM
=§RTJn化/匕)+2金“附一丁2)
MM
=《RTJn化/匕)+詈;宿一與)
MM2
=3.81x104J
由此得到該循環(huán)的效率為
〃=卬/。=]5%
13-24圖(a)是某單原子理想氣體循環(huán)過(guò)程的V-T圖圖中Uc=2VA.
試問(wèn):(1)圖中所示循環(huán)是代表制冷機(jī)還是熱機(jī)?(2)如是正循環(huán)(熱機(jī)循
環(huán)),求出其循環(huán)效率.
題13-24圖
分析以正、逆循環(huán)來(lái)區(qū)分熱機(jī)和制冷機(jī)是針對(duì)p-U圖中循環(huán)曲線(xiàn)行進(jìn)方
向而言的.因此,對(duì)圖(a)中的循環(huán)進(jìn)行分析時(shí),一般要先將其轉(zhuǎn)換為p—V
圖.轉(zhuǎn)換方法主要是通過(guò)找每一過(guò)程的特殊點(diǎn),并利用理想氣體物態(tài)方程來(lái)
完成,由圖(a)可以看出,BC為等體降溫過(guò)程,CA為等溫壓縮過(guò)程;而對(duì)
AB過(guò)程的分析,可以依據(jù)圖中直線(xiàn)過(guò)原點(diǎn)來(lái)判別.其直線(xiàn)方程為V=CT,
C為常數(shù).將其與理想氣體物態(tài)方程pV=m/MRT比較可知該過(guò)程為等壓
膨脹過(guò)程(注意:如果直線(xiàn)不過(guò)原點(diǎn),就不是等壓過(guò)程卜這樣,就可得出p一
V圖中的過(guò)程曲線(xiàn),并可判別是正循環(huán)(熱機(jī)循環(huán))還是逆循環(huán)(制冷機(jī)循環(huán)),
再參考題13—23的方法求出循環(huán)效率.
解Q)根據(jù)分析,將V-T圖轉(zhuǎn)換為相應(yīng)的p-U圖,如圖(b)所示.圖中曲
線(xiàn)行進(jìn)方向是正循環(huán),即為熱機(jī)循環(huán).
(2)根據(jù)得到的p-V圖可知,AB為等壓膨脹過(guò)程,為吸熱過(guò)程.BC為等
體降壓過(guò)程,CA為等溫壓縮過(guò)程,均為放熱過(guò)程.故系統(tǒng)在循環(huán)過(guò)程中吸
收和放出的熱量分別為
2=%,“(『,)
&=£Cv,"(TB-TA)哈巴小儀/%)
MM
CA為等溫線(xiàn),有TA=TC;AB為等壓線(xiàn),且因VC=2VA,則有TA=TB
/2.對(duì)單原子理想氣體,其摩爾定壓熱容Cp,m=5R/2,摩爾定容熱容Cv.m
=3R/2.故循環(huán)效率為
==1-17;+7;ln2/(57;/2)=l-(3+21n2)/5=12/3
13-25一卡諾熱機(jī)的低溫?zé)嵩礈囟葹?℃,群為40%,若要將其效率提
高到50%,問(wèn)高溫?zé)嵩吹臏囟刃杼岣叨嗌伲?/p>
解設(shè)高溫?zé)嵩吹臏囟确謩e為T(mén)、邛,則有
〃'=1-%/小tf=1-TJT:
其中T2為低溫?zé)嵩礈囟?由上述兩式可得高溫?zé)嵩葱杼岣叩臏囟葹?/p>
AT=邛一('=-------=93.3K
13-26-定量的理想氣體,經(jīng)歷如圖所示的循環(huán)過(guò)程.其中AB和CD是
等壓過(guò)程,BC和DA是絕熱過(guò)程.已知B點(diǎn)溫度TB=TI,C點(diǎn)溫度汽=72.⑴證
明該熱機(jī)的效率〃=1-T2/T1,(2)這個(gè)循環(huán)是卡諾循環(huán)嗎?
題13-26圖
分析首先分析判斷循環(huán)中各過(guò)程的吸熱、放熱情況.BC和DA是絕熱過(guò)
程,故QBC、QDA均為零:而AB為等壓膨脹過(guò)程(吸熱)、CD為等壓壓縮過(guò)程
(放熱),這兩個(gè)過(guò)程所吸收和放出的熱量均可山相關(guān)的溫度表示.再利用絕熱
和等壓的過(guò)程方程,建立四點(diǎn)溫度之間的聯(lián)系,最終可得到求證的形式.
證Q)根據(jù)分析可知
TcF
T-T
BA(1)
與求證的結(jié)果比較,只需證得馬?=△■.為此,對(duì)AB、CD、BC、DA分
TcTB
別列出過(guò)程方程如下
VA/TA=VB/TB(2)
D
Vc/Tc=V/TD(3)
=Vr'Tc(4)
V;-'TD=V;-'7;(5)
聯(lián)立求解上述各式,可證得
〃=1—TC/TB=1—T2/T1
(2)雖然該循環(huán)效率的表達(dá)式與卡諾循環(huán)相似,但并不是卡諾循環(huán).其原
因是:①卡諾循環(huán)是由兩條絕熱線(xiàn)和兩條等溫線(xiàn)構(gòu)成,而這個(gè)循環(huán)則與卡諾
循環(huán)不同;②式中乙、72的含意不同,本題中石、丁2只是溫度變化中兩特
定點(diǎn)的溫度,不是兩等溫?zé)嵩吹暮愣囟?
13-27一小型熱電廠內(nèi),一臺(tái)利用地?zé)岚l(fā)電的熱機(jī)工作于溫度為227℃的
地下熱源和溫度為27C的地表之間.假定該熱機(jī)每小時(shí)能從地下熱源獲取1.8
xlOiiJ的熱量.試從理論上計(jì)算其最大功率為多少?
分析熱機(jī)必須工作在最高的循環(huán)效率時(shí),才能獲取最大的功率.山卡諾定
理可知,在高溫?zé)嵩碩i和低溫?zé)嵩碩2之間工作的可逆卡諾熱機(jī)的效率最高,
其效率為?7=1-72/口.由于已知熱機(jī)在確定的時(shí)間內(nèi)吸取的熱量,故由效率
與功率的關(guān)系式l1=W/Q=pt/Q,可得此條件下的最大功率.
解根據(jù)分析,熱機(jī)獲得的最大功率為
1
p=tlQ/t=(1-TJTl)Q/t=2.0xl0is'
13-28有一以理想氣體為工作物質(zhì)的熱機(jī),其循環(huán)如圖所示,試證明熱
分析該熱機(jī)由三個(gè)過(guò)程組成,圖中AB是絕熱過(guò)程,BC是等壓壓縮過(guò)程,
CA是等體升壓過(guò)程.其中CA過(guò)程系統(tǒng)吸熱,BC過(guò)程系統(tǒng)放熱.本題可從效率
定義〃=1-。2/儲(chǔ)=1-。叱/。6出發(fā),利用熱力學(xué)第一定律和等體、等壓
方程以及Y=Cp,m樺Cv,m的關(guān)系來(lái)證明.
p
題13-28圖
證該熱機(jī)循環(huán)的效率為
〃=1—/Ql=1—QBCIQCA
其中QBC=m/MCp,m(Tc-TB),QCA=m/MCv,m(TA-TC),則上式可寫(xiě)
為
r
lc-^L.TB/TC-\
----------------1—V--------------------
TA-TC/TA/TC-\
在等壓過(guò)程BC和等體過(guò)程CA中分別有TB/匕=TC/V2,TA/PI=TC/P2,
代入上式得
(V,/K)-l
13-29如圖所示為理想的狄賽爾(Diesel)內(nèi)燃機(jī)循環(huán)過(guò)程,它由兩絕熱線(xiàn)
AB、CD和等壓線(xiàn)BC及等體線(xiàn)DA組成.試證此內(nèi)燃機(jī)的效率為
,(匕/%)'-1
“一y(v,/v2nv3/v2-i)
p
題13-29圖
證求證方法與題13—28相似.由于該循環(huán)僅在DA過(guò)程中放熱、BC過(guò)程中
吸熱,則熱機(jī)效率為
〃=1-以|/心=1-^----------
而CPJTC-TB)⑴
=14金旦
?Tc-TB
在絕熱過(guò)程AB中,有匕/,即
〃/,=化/匕尸⑵
在等壓過(guò)程BC中,有心/匕=〃/匕,即
TC/TB=V./V2(3)
再利用絕熱過(guò)程CD,得
TDVr'=TcVr'(4)
解上述各式,可證得
”1(匕/-—1
y(v,/v2r(v3/v2-i)
13-30如圖所示,將兩部卡諾熱機(jī)連接起來(lái),使從一個(gè)熱機(jī)輸出的熱量,
輸入到另一個(gè)熱機(jī)中去.設(shè)第?個(gè)熱機(jī)工作在溫度為T(mén)1和72的兩熱源之間,
其效率為小,而第二個(gè)熱機(jī)工作在溫度為丁2和丁3的兩熱源之間,其效率
為〃2.如組合熱機(jī)的總效率以〃=(2+該)/Q1表示.試證總效率表達(dá)式為
ri-(l)t]2+m或ij=l—T3/T1
題13-3()圖
分析按效率定義,兩熱機(jī)單獨(dú)的效率分別為小=Wi/Qi和〃2=W/Q2,
其中=Q1—Q2,W2=Q2-Q3.第一個(gè)等式的證明可采用兩種方法:(1)
從等式右側(cè)出發(fā),將小、伙的上述表達(dá)式代入,即可得證.讀者可以一試.(2)
從等式左側(cè)的組合熱機(jī)效率〃=(W1+W)/Qi出發(fā),利用力、恨的表達(dá)式,
即可證明.由于卡諾熱機(jī)的效率只取決于兩熱源的溫度,故只需分別將兩個(gè)
卡諾熱機(jī)的效率表達(dá)式少=1一72/T1和惚=1一73/72代入第一個(gè)等式,
即可得到第二個(gè)等式.
證按分析中所述方法(2)求證.因中=W11Qi、小=此/Q2,則組合熱
機(jī)效率
〃二號(hào)Y+A+喏(1)
以Q2=Q1-Wi代入式⑴,可證得
1=小+〃2(1一力)(2)
將力=1一72/石和42=1-73/72代入式(2),亦可證得
『1-T2/T1+(1-T3/T2)T2/T1=1—T3/T1
13-31在夏季,假定室外溫度恒定為37℃,啟動(dòng)空調(diào)使室內(nèi)溫度始終保
持在17C.如果每天有2.51xi08J的熱量通過(guò)熱傳導(dǎo)等方式自室外流入室
內(nèi),則空調(diào)一天耗電多少?(設(shè)該空調(diào)制冷機(jī)的制冷系數(shù)為同條件下的卡諾
制冷機(jī)制冷系數(shù)的60%)
題13-31圖
分析耗電量的單位為kWh,lkWh=3.6xl06j.圖示是空調(diào)的工作過(guò)程示
意圖.因?yàn)榭ㄖZ制冷機(jī)的制冷系數(shù)為線(xiàn),其中Ti為高溫?zé)嵩礈囟龋ㄊ?/p>
T,—
外環(huán)境溫度),丁2為低溫?zé)嵩礈囟龋ㄊ覂?nèi)溫度).所以,空調(diào)的制冷系數(shù)為
e=ek60%=0.6T2/(TI-T2)
另一方面,山制冷系數(shù)的定義,有
e=Q2/(Qi-Q2)
其中QI為空調(diào)傳遞給高溫?zé)嵩吹臒崃?,即空調(diào)向室外排放的總熱量;Q2是
空調(diào)從房間內(nèi)吸取的總熱量.若Q'為室外傳進(jìn)室內(nèi)的熱量,則在熱平衡時(shí)'Q2
=Q'.由此,就可以求出空調(diào)的耗電作功總值W=QI-Q2.
解根據(jù)上述分析,空調(diào)的制冷系數(shù)為
60%=8.7
在室內(nèi)溫度恒定時(shí),有Q2=Q'.由e=Q2/(Q1-Q2)可得空調(diào)運(yùn)行一天所
耗電功
7
W=Qi-Q2=Q2/e=Q7e=2.89xl0=8.0kWh
13-32一定量的理想氣體進(jìn)行如圖所示的逆向斯特林循環(huán)(回?zé)崾街评?/p>
機(jī)中的工作循環(huán)),其中1-2為等溫(Ti)壓縮過(guò)程,3T4為等溫(T2)膨脹過(guò)程,
其他兩過(guò)程為等體過(guò)程.求證此循環(huán)的制冷系數(shù)和逆向卡諾循環(huán)制冷系數(shù)相
等.(這一循環(huán)是回?zé)崾街评錂C(jī)中的工作循環(huán),具有較好的制冷效果4Tl過(guò)程
從熱庫(kù)吸收的熱量在2-3過(guò)程中又放回給了熱庫(kù),故均不計(jì)入循環(huán)系數(shù)計(jì)
算.)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《會(huì)計(jì)從業(yè)總賬管理》課件
- 《廣場(chǎng)規(guī)劃設(shè)計(jì)》課件
- 寒假自習(xí)課 25春初中道德與法治八年級(jí)下冊(cè)教學(xué)課件 第三單元 第六課 第4課時(shí) 國(guó)家監(jiān)察機(jī)關(guān)
- 短信營(yíng)銷(xiāo)合同三篇
- 農(nóng)學(xué)啟示錄模板
- 理發(fā)店前臺(tái)接待總結(jié)
- 兒科護(hù)士的工作心得
- 探索化學(xué)反應(yīng)奧秘
- 收銀員的勞動(dòng)合同三篇
- 營(yíng)銷(xiāo)策略總結(jié)
- DB21-T 2931-2018羊肚菌日光溫室栽培技術(shù)規(guī)程
- 貴州省黔東南州2023-2024學(xué)年九年級(jí)上學(xué)期期末文化水平測(cè)試化學(xué)試卷
- 《空調(diào)零部件介紹》課件
- 2024年度醫(yī)院內(nèi)分泌與代謝科述職報(bào)告課件
- 手術(shù)室無(wú)菌操作流程
- 農(nóng)業(yè)機(jī)械控制系統(tǒng)硬件在環(huán)測(cè)試規(guī)范
- 翁潭電站大王山輸水隧洞施工控制網(wǎng)設(shè)計(jì)說(shuō)明書(shū)
- 隆胸術(shù)培訓(xùn)課件
- 鋼筋焊接培訓(xùn)課件
- 行政內(nèi)勤培訓(xùn)課件
- 化纖企業(yè)(化學(xué)纖維紡織企業(yè))安全生產(chǎn)操作規(guī)程
評(píng)論
0/150
提交評(píng)論