版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省宣威市第四中學(xué)2024屆高三第三次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計(jì)圖如下面的條形圖.該教師退休后加強(qiáng)了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計(jì)圖如下面的折線圖.已知目前的月就醫(yī)費(fèi)比剛退休時(shí)少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元2.設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)3.記個(gè)兩兩無(wú)交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間4.下列函數(shù)中,值域?yàn)镽且為奇函數(shù)的是()A. B. C. D.5.已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于點(diǎn)、,O為坐標(biāo)原點(diǎn).若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.36.已知是等差數(shù)列的前項(xiàng)和,若,設(shè),則數(shù)列的前項(xiàng)和取最大值時(shí)的值為()A.2020 B.20l9 C.2018 D.20177.在中,角所對(duì)的邊分別為,已知,則()A.或 B. C. D.或8.已知數(shù)列是公比為的正項(xiàng)等比數(shù)列,若、滿足,則的最小值為()A. B. C. D.9.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.10.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位11.如圖,在等腰梯形中,,,,為的中點(diǎn),將與分別沿、向上折起,使、重合為點(diǎn),則三棱錐的外接球的體積是()A. B.C. D.12.的內(nèi)角的對(duì)邊分別為,已知,則角的大小為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在一個(gè)倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個(gè)半徑為1的不銹鋼制的實(shí)心半球后,半球的大圓面、水面均與容器口相平,則的值為_(kāi)___________.14.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則雙曲線的離心率為_(kāi)_____.15.函數(shù)在區(qū)間內(nèi)有且僅有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_____.16.三個(gè)小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個(gè)人的可能性相同),則三人都收到禮物的概率為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在直三棱柱中,,點(diǎn)分別為和的中點(diǎn).(Ⅰ)棱上是否存在點(diǎn)使得平面平面?若存在,寫(xiě)出的長(zhǎng)并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.(Ⅱ)求二面角的余弦值.18.(12分)已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標(biāo)方程與直線的普通方程;(2)已知點(diǎn),直線與曲線交于、兩點(diǎn),求.19.(12分)已知,.(1)當(dāng)時(shí),證明:;(2)設(shè)直線是函數(shù)在點(diǎn)處的切線,若直線也與相切,求正整數(shù)的值.20.(12分)若不等式在時(shí)恒成立,則的取值范圍是__________.21.(12分)已知橢圓的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為,,為其右焦點(diǎn),,且該橢圓的離心率為;(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過(guò)點(diǎn)作斜率為的直線交橢圓于軸上方的點(diǎn),交直線于點(diǎn),直線與橢圓的另一個(gè)交點(diǎn)為,直線與直線交于點(diǎn).若,求取值范圍.22.(10分)已知橢圓C的離心率為且經(jīng)過(guò)點(diǎn)(1)求橢圓C的方程;(2)過(guò)點(diǎn)(0,2)的直線l與橢圓C交于不同兩點(diǎn)A、B,以O(shè)A、OB為鄰邊的平行四邊形OAMB的頂點(diǎn)M在橢圓C上,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè)目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結(jié)果即可.【詳解】設(shè)目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點(diǎn)睛】本題考查由條形圖和折線圖等基礎(chǔ)知識(shí)解決實(shí)際問(wèn)題,屬于基礎(chǔ)題.2、A【解析】試題分析:,,所以,即集合中共有3個(gè)元素,故選A.考點(diǎn):集合的運(yùn)算.3、D【解析】
可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時(shí)的導(dǎo)數(shù)情況,再畫(huà)出函數(shù)大致圖形,將所求區(qū)間端點(diǎn)值分別看作對(duì)應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當(dāng)且時(shí),.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點(diǎn)睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對(duì)應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題4、C【解析】
依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域?yàn)?,非奇非偶函?shù),排除;B.,值域?yàn)椋婧瘮?shù),排除;C.,值域?yàn)?,奇函?shù),滿足;D.,值域?yàn)椋瞧娣桥己瘮?shù),排除;故選:.【點(diǎn)睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對(duì)于函數(shù)知識(shí)的綜合應(yīng)用.5、C【解析】試題分析:拋物線的準(zhǔn)線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點(diǎn),,,則;選C考點(diǎn):1.雙曲線的漸近線和離心率;2.拋物線的準(zhǔn)線方程;6、B【解析】
根據(jù)題意計(jì)算,,,計(jì)算,,,得到答案.【詳解】是等差數(shù)列的前項(xiàng)和,若,故,,,,故,當(dāng)時(shí),,,,,當(dāng)時(shí),,故前項(xiàng)和最大.故選:.【點(diǎn)睛】本題考查了數(shù)列和的最值問(wèn)題,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.7、D【解析】
根據(jù)正弦定理得到,化簡(jiǎn)得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點(diǎn)睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計(jì)算能力.8、B【解析】
利用等比數(shù)列的通項(xiàng)公式和指數(shù)冪的運(yùn)算法則、指數(shù)函數(shù)的單調(diào)性求得再根據(jù)此范圍求的最小值.【詳解】數(shù)列是公比為的正項(xiàng)等比數(shù)列,、滿足,由等比數(shù)列的通項(xiàng)公式得,即,,可得,且、都是正整數(shù),求的最小值即求在,且、都是正整數(shù)范圍下求最小值和的最小值,討論、取值.當(dāng)且時(shí),的最小值為.故選:B.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和指數(shù)冪的運(yùn)算法則、指數(shù)函數(shù)性質(zhì)等基礎(chǔ)知識(shí),考查數(shù)學(xué)運(yùn)算求解能力和分類討論思想,是中等題.9、C【解析】
由三視圖知,該幾何體是一個(gè)圓錐,其母線長(zhǎng)是5,底面直徑是6,據(jù)此可計(jì)算出答案.【詳解】由三視圖知,該幾何體是一個(gè)圓錐,其母線長(zhǎng)是5,底面直徑是6,該幾何體的表面積.故選:C【點(diǎn)睛】本題主要考查了三視圖的知識(shí),幾何體的表面積的計(jì)算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.10、C【解析】
根據(jù)正弦型函數(shù)的圖象得到,結(jié)合圖像變換知識(shí)得到答案.【詳解】由圖象知:,∴.又時(shí)函數(shù)值最大,所以.又,∴,從而,,只需將的圖象向左平移個(gè)單位即可得到的圖象,故選C.【點(diǎn)睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對(duì)應(yīng)的特殊點(diǎn)求,一般用最高點(diǎn)或最低點(diǎn)求.11、A【解析】
由題意等腰梯形中的三個(gè)三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長(zhǎng)為1的正四面體,設(shè)是的中心,則平面,,,外接球球心必在高上,設(shè)外接球半徑為,即,∴,解得,球體積為.故選:A.【點(diǎn)睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.12、A【解析】
先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡(jiǎn),可求出解B.【詳解】由正弦定理可得,即,即有,因?yàn)?,則,而,所以.故選:A【點(diǎn)睛】此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:【點(diǎn)睛】本題考查圓錐的體積、球的體積的計(jì)算,考查學(xué)生空間想象能力與計(jì)算能力,是一道中檔題.14、2【解析】
根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【點(diǎn)睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、【解析】
對(duì)函數(shù)零點(diǎn)問(wèn)題等價(jià)轉(zhuǎn)化,分離參數(shù)討論交點(diǎn)個(gè)數(shù),數(shù)形結(jié)合求解.【詳解】由題:函數(shù)在區(qū)間內(nèi)有且僅有兩個(gè)零點(diǎn),,等價(jià)于函數(shù)恰有兩個(gè)公共點(diǎn),作出大致圖象:要有兩個(gè)交點(diǎn),即,所以.故答案為:【點(diǎn)睛】此題考查函數(shù)零點(diǎn)問(wèn)題,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,關(guān)鍵在于對(duì)函數(shù)零點(diǎn)問(wèn)題恰當(dāng)變形,等價(jià)轉(zhuǎn)化,數(shù)形結(jié)合求解.16、【解析】
基本事件總數(shù),三人都收到禮物包含的基本事件個(gè)數(shù).由此能求出三人都收到禮物的概率.【詳解】三個(gè)小朋友之間準(zhǔn)備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個(gè)人的可能性相同),基本事件總數(shù),三人都收到禮物包含的基本事件個(gè)數(shù).則三人都收到禮物的概率.故答案為:.【點(diǎn)睛】本題考查古典概型概率的求法,考查運(yùn)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)存在點(diǎn)滿足題意,且,證明詳見(jiàn)解析;(Ⅱ).【解析】
(Ⅰ)可考慮采用補(bǔ)形法,取的中點(diǎn)為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能證明,則可得證,可通過(guò)我們反推出點(diǎn)對(duì)應(yīng)位置應(yīng)在處,進(jìn)而得證;(Ⅱ)采用建系法,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求出兩平面對(duì)應(yīng)法向量,再結(jié)合向量夾角公式即可求解;【詳解】(Ⅰ)存在點(diǎn)滿足題意,且.證明如下:取的中點(diǎn)為,連接.則,所以平面.因?yàn)槭堑闹悬c(diǎn),所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),,,所以,從而可得.又因?yàn)?,所以平?因?yàn)槠矫?,所以平面平?(Ⅱ)如圖所示,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系.易知,,,,所以,,.設(shè)平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【點(diǎn)睛】本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題18、(1).(2)【解析】
(1)根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式,以及消去參數(shù),即可求解;(2)設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,,將直線的參數(shù)方程代入曲線方程,結(jié)合根與系數(shù)的關(guān)系,即可求解.【詳解】(1)對(duì)于曲線的極坐標(biāo)方程為,可得,又由,可得,即,所以曲線的普通方程為.由直線的參數(shù)方程為(為參數(shù)),消去參數(shù)可得,即直線的方程為,即.(2)設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,,將直線的參數(shù)方程(為參數(shù))代入曲線中,可得.化簡(jiǎn)得:,則.所以.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及直線的參數(shù)方程的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.19、(1)證明見(jiàn)解析;(2).【解析】
(1)令,求導(dǎo),可知單調(diào)遞增,且,,因而在上存在零點(diǎn),在此取得最小值,再證最小值大于零即可.(2)根據(jù)題意得到在點(diǎn)處的切線的方程①,再設(shè)直線與相切于點(diǎn),有,即,再求得在點(diǎn)處的切線直線的方程為②由①②可得,即,根據(jù),轉(zhuǎn)化為,,令,轉(zhuǎn)化為要使得在上存在零點(diǎn),則只需,求解.【詳解】(1)證明:設(shè),則,單調(diào)遞增,且,,因而在上存在零點(diǎn),且在上單調(diào)遞減,在上單調(diào)遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設(shè)直線與相切于點(diǎn),注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數(shù)可知,,所以,,令,則,當(dāng)時(shí),為單調(diào)遞增函數(shù),且,從而在上無(wú)零點(diǎn);當(dāng)時(shí),要使得在上存在零點(diǎn),則只需,,因?yàn)闉閱握{(diào)遞增函數(shù),,所以;因?yàn)闉閱握{(diào)遞增函數(shù),且,因此;因?yàn)闉檎麛?shù),且,所以.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.20、【解析】
原不等式等價(jià)于在恒成立,令,,求出在上的最小值后可得的取值范圍.【詳解】因?yàn)樵跁r(shí)恒成立,故在恒成立.令,由可得.令,,則為上的增函數(shù),故.故.故答案為:.【點(diǎn)睛】本題考查含參數(shù)的不等式的恒成立,對(duì)于此類問(wèn)題,優(yōu)先考慮參變分離,把恒成立問(wèn)題轉(zhuǎn)化為不含參數(shù)的新函數(shù)的最值問(wèn)題,本題屬于基礎(chǔ)題.21、(Ⅰ);(Ⅱ),.【解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度專業(yè)翻譯個(gè)人服務(wù)協(xié)議2篇
- 急性中毒的救護(hù)PowerPointPresentation
- 音樂(lè)廳車站車庫(kù)保安執(zhí)勤心得
- 2025版跨境電商金融服務(wù)擔(dān)保協(xié)議3篇
- 二零二五年度鋼廠爐渣環(huán)保處理技術(shù)服務(wù)合同2篇
- 二零二五年度國(guó)際貿(mào)易信用證擔(dān)保服務(wù)標(biāo)準(zhǔn)范本2篇
- 二零二五版推土機(jī)租賃與土壤恢復(fù)合作協(xié)議3篇
- 二零二五年度電子元器件物流配送協(xié)議3篇
- 二零二五年度家政服務(wù)與家庭文化傳承合同3篇
- 二零二五年度汽車維修行業(yè)技師勞務(wù)派遣管理協(xié)議3篇
- 跨學(xué)科主題學(xué)習(xí)2-探索太空逐夢(mèng)航天 說(shuō)課稿-2024-2025學(xué)年粵人版地理七年級(jí)上冊(cè)
- 2024年醫(yī)銷售藥銷售工作總結(jié)
- 小學(xué)生雪豹課件
- GB/T 44888-2024政務(wù)服務(wù)大廳智能化建設(shè)指南
- 例說(shuō)相機(jī)誘導(dǎo)在語(yǔ)文教學(xué)中的運(yùn)用 相機(jī)誘導(dǎo)
- 浙江省紹興市2023年中考科學(xué)試題(word版-含答案)
- 《核心素養(yǎng)下初中足球教學(xué)研究3700字(論文)》
- 2023年中智集團(tuán)下屬中智股份公司招聘筆試題庫(kù)及答案解析
- GA 1409-2017警用服飾硬式肩章
- 小兒垂釣 (課件)(14張)
- 國(guó)學(xué)經(jīng)典:宋代詞人蘇軾及作品賞析課件
評(píng)論
0/150
提交評(píng)論