湖北省孝感市八校教學(xué)聯(lián)盟2024屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
湖北省孝感市八校教學(xué)聯(lián)盟2024屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
湖北省孝感市八校教學(xué)聯(lián)盟2024屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
湖北省孝感市八校教學(xué)聯(lián)盟2024屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
湖北省孝感市八校教學(xué)聯(lián)盟2024屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省孝感市八校教學(xué)聯(lián)盟2024屆高三第五次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,若對(duì),且,使得,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變),再向右平移個(gè)單位長(zhǎng)度,則所得函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心為()A. B. C. D.3.為了貫徹落實(shí)黨中央精準(zhǔn)扶貧決策,某市將其低收入家庭的基本情況經(jīng)過(guò)統(tǒng)計(jì)繪制如圖,其中各項(xiàng)統(tǒng)計(jì)不重復(fù).若該市老年低收入家庭共有900戶(hù),則下列說(shuō)法錯(cuò)誤的是()A.該市總有15000戶(hù)低收入家庭B.在該市從業(yè)人員中,低收入家庭共有1800戶(hù)C.在該市無(wú)業(yè)人員中,低收入家庭有4350戶(hù)D.在該市大于18歲在讀學(xué)生中,低收入家庭有800戶(hù)4.若復(fù)數(shù)滿(mǎn)足,則()A. B. C. D.5.已知非零向量,滿(mǎn)足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:6.若滿(mǎn)足約束條件則的最大值為()A.10 B.8 C.5 D.37.在中,,分別為,的中點(diǎn),為上的任一點(diǎn),實(shí)數(shù),滿(mǎn)足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時(shí),的值為()A.-1 B.1 C. D.8.如圖,在等腰梯形中,,,,為的中點(diǎn),將與分別沿、向上折起,使、重合為點(diǎn),則三棱錐的外接球的體積是()A. B.C. D.9.設(shè)函數(shù)的定義域?yàn)?,命題:,的否定是()A., B.,C., D.,10.已知類(lèi)產(chǎn)品共兩件,類(lèi)產(chǎn)品共三件,混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分開(kāi)來(lái),每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件類(lèi)產(chǎn)品或者檢測(cè)出3件類(lèi)產(chǎn)品時(shí),檢測(cè)結(jié)束,則第一次檢測(cè)出類(lèi)產(chǎn)品,第二次檢測(cè)出類(lèi)產(chǎn)品的概率為()A. B. C. D.11.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個(gè)單位長(zhǎng)度后得到的圖象關(guān)于軸對(duì)稱(chēng);③若在上恰有7個(gè)零點(diǎn),則的取值范圍為;④若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個(gè)數(shù)為()A.1 B.2 C.3 D.412.函數(shù)的對(duì)稱(chēng)軸不可能為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線上到其焦點(diǎn)距離為5的點(diǎn)有_______個(gè).14.設(shè)全集,集合,,則集合______.15.復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù)為_(kāi)_______.16.在四面體中,分別是的中點(diǎn).則下述結(jié)論:①四面體的體積為;②異面直線所成角的正弦值為;③四面體外接球的表面積為;④若用一個(gè)與直線垂直,且與四面體的每個(gè)面都相交的平面去截該四面體,由此得到一個(gè)多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫(xiě)所有正確結(jié)論的編號(hào))三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù),求的極值;(2)證明:.(參考數(shù)據(jù):)18.(12分)如圖所示,三棱柱中,平面,點(diǎn),分別在線段,上,且,,是線段的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.19.(12分)已知數(shù)列的前n項(xiàng)和為,且n、、成等差數(shù)列,.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)若數(shù)列中去掉數(shù)列的項(xiàng)后余下的項(xiàng)按原順序組成數(shù)列,求的值.20.(12分)已知A是拋物線E:y2=2px(p>0)上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑兩端點(diǎn)的圓C交直線x=1于M,N兩點(diǎn).(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點(diǎn)為P,Q,點(diǎn)G為PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),求直線OG斜率的取值范圍.21.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程;(2)設(shè)和交點(diǎn)的交點(diǎn)為,求的面積.22.(10分)如圖,正方體的棱長(zhǎng)為2,為棱的中點(diǎn).(1)面出過(guò)點(diǎn)且與直線垂直的平面,標(biāo)出該平面與正方體各個(gè)面的交線(不必說(shuō)明畫(huà)法及理由);(2)求與該平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

先求出的值域,再利用導(dǎo)數(shù)討論函數(shù)在區(qū)間上的單調(diào)性,結(jié)合函數(shù)值域,由方程有兩個(gè)根求參數(shù)范圍即可.【詳解】因?yàn)椋?,?dāng)時(shí),,故在區(qū)間上單調(diào)遞減;當(dāng)時(shí),,故在區(qū)間上單調(diào)遞增;當(dāng)時(shí),令,解得,故在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.又,且當(dāng)趨近于零時(shí),趨近于正無(wú)窮;對(duì)函數(shù),當(dāng)時(shí),;根據(jù)題意,對(duì),且,使得成立,只需,即可得,解得.故選:D.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究由方程根的個(gè)數(shù)求參數(shù)范圍的問(wèn)題,涉及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)值域的問(wèn)題,屬綜合困難題.2、D【解析】

先化簡(jiǎn)函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對(duì)稱(chēng)性得解.【詳解】,

將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,所得函數(shù)的解析式為,

再向右平移個(gè)單位長(zhǎng)度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心為,故選D.【點(diǎn)睛】三角函數(shù)的圖象與性質(zhì)是高考考查的熱點(diǎn)之一,經(jīng)常考查定義域、值域、周期性、對(duì)稱(chēng)性、奇偶性、單調(diào)性、最值等,其中公式運(yùn)用及其變形能力、運(yùn)算能力、方程思想等可以在這些問(wèn)題中進(jìn)行體現(xiàn),在復(fù)習(xí)時(shí)要注意基礎(chǔ)知識(shí)的理解與落實(shí).三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時(shí)要抓住函數(shù)解析式這個(gè)關(guān)鍵,在函數(shù)解析式較為復(fù)雜時(shí)要注意使用三角恒等變換公式把函數(shù)解析式化為一個(gè)角的一個(gè)三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.3、D【解析】

根據(jù)給出的統(tǒng)計(jì)圖表,對(duì)選項(xiàng)進(jìn)行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶(hù),所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶(hù)),A正確,該市從業(yè)人員中,低收入家庭共有15000×12%=1800(戶(hù)),B正確,該市無(wú)業(yè)人員中,低收入家庭有15000×29%%=4350(戶(hù)),C正確,該市大于18歲在讀學(xué)生中,低收入家庭有15000×4%=600(戶(hù)),D錯(cuò)誤.故選:D.【點(diǎn)睛】本題主要考查對(duì)統(tǒng)計(jì)圖表的認(rèn)識(shí)和分析,這類(lèi)題要認(rèn)真分析圖表的內(nèi)容,讀懂圖表反映出的信息是解題的關(guān)鍵,屬于基礎(chǔ)題.4、C【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式求解.【詳解】解:由,得,∴.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,是基礎(chǔ)題.5、C【解析】

根據(jù)向量的數(shù)量積運(yùn)算,由向量的關(guān)系,可得選項(xiàng).【詳解】,,∴等價(jià)于,故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算和命題的充分、必要條件,屬于基礎(chǔ)題.6、D【解析】

畫(huà)出可行域,將化為,通過(guò)平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過(guò)時(shí),直線在軸上的截距最大,有最大值為3.故選:D.【點(diǎn)睛】本題考查了線性規(guī)劃問(wèn)題.一般第一步畫(huà)出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過(guò)平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即可求出最值.注意畫(huà)可行域時(shí),邊界線的虛實(shí)問(wèn)題.7、D【解析】

根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時(shí),為的中點(diǎn),再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因?yàn)槭恰鞯闹形痪€,所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時(shí),即為的中點(diǎn)時(shí),等號(hào)成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點(diǎn)睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.8、A【解析】

由題意等腰梯形中的三個(gè)三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長(zhǎng)為1的正四面體,設(shè)是的中心,則平面,,,外接球球心必在高上,設(shè)外接球半徑為,即,∴,解得,球體積為.故選:A.【點(diǎn)睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.9、D【解析】

根據(jù)命題的否定的定義,全稱(chēng)命題的否定是特稱(chēng)命題求解.【詳解】因?yàn)椋?,是全稱(chēng)命題,所以其否定是特稱(chēng)命題,即,.故選:D【點(diǎn)睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.10、D【解析】

根據(jù)分步計(jì)數(shù)原理,由古典概型概率公式可得第一次檢測(cè)出類(lèi)產(chǎn)品的概率,不放回情況下第二次檢測(cè)出類(lèi)產(chǎn)品的概率,即可得解.【詳解】類(lèi)產(chǎn)品共兩件,類(lèi)產(chǎn)品共三件,則第一次檢測(cè)出類(lèi)產(chǎn)品的概率為;不放回情況下,剩余4件產(chǎn)品,則第二次檢測(cè)出類(lèi)產(chǎn)品的概率為;故第一次檢測(cè)出類(lèi)產(chǎn)品,第二次檢測(cè)出類(lèi)產(chǎn)品的概率為;故選:D.【點(diǎn)睛】本題考查了分步乘法計(jì)數(shù)原理的應(yīng)用,古典概型概率計(jì)算公式的應(yīng)用,屬于基礎(chǔ)題.11、B【解析】

對(duì)函數(shù)化簡(jiǎn)可得,進(jìn)而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱(chēng)性及平移變換,對(duì)四個(gè)命題逐個(gè)分析,可選出答案.【詳解】因?yàn)?,所以周?對(duì)于①,因?yàn)?,所以,即,故①錯(cuò)誤;對(duì)于②,函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到的函數(shù)為,其圖象關(guān)于軸對(duì)稱(chēng),則,解得,故對(duì)任意整數(shù),,所以②錯(cuò)誤;對(duì)于③,令,可得,則,因?yàn)?,所以在上?個(gè)零點(diǎn),且,所以第7個(gè)零點(diǎn),若存在第8個(gè)零點(diǎn),則,所以,即,解得,故③正確;對(duì)于④,因?yàn)?,且,所以,解得,又,所以,故④正確.故選:B.【點(diǎn)睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱(chēng)性,考查學(xué)生的計(jì)算求解能力與推理能力,屬于中檔題.12、D【解析】

由條件利用余弦函數(shù)的圖象的對(duì)稱(chēng)性,得出結(jié)論.【詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱(chēng)軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱(chēng)性,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

設(shè)符合條件的點(diǎn),由拋物線的定義可得,即可求解.【詳解】設(shè)符合條件的點(diǎn),則,所以符合條件的點(diǎn)有2個(gè).故答案為:2【點(diǎn)睛】本題考查拋物線的定義的應(yīng)用,考查拋物線的焦半徑.14、【解析】

分別解得集合A與集合B的補(bǔ)集,再由集合交集的運(yùn)算法則計(jì)算求得答案.【詳解】由題可知,集合A中集合B的補(bǔ)集,則故答案為:【點(diǎn)睛】本題考查集合的交集與補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.15、【解析】

利用復(fù)數(shù)的乘法運(yùn)算求出,再利用共軛復(fù)數(shù)的概念即可求解.【詳解】由,則.故答案為:【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算以及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.16、①③④.【解析】

補(bǔ)圖成長(zhǎng)方體,在長(zhǎng)方體中利用割補(bǔ)法求四面體的體積,和外接球的表面積,以及異面直線的夾角,作出截面即可計(jì)算截面面積的最值.【詳解】根據(jù)四面體特征,可以補(bǔ)圖成長(zhǎng)方體設(shè)其邊長(zhǎng)為,,解得補(bǔ)成長(zhǎng),寬,高分別為的長(zhǎng)方體,在長(zhǎng)方體中:①四面體的體積為,故正確②異面直線所成角的正弦值等價(jià)于邊長(zhǎng)為的矩形的對(duì)角線夾角正弦值,可得正弦值為,故錯(cuò);③四面體外接球就是長(zhǎng)方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設(shè)異面直線與所成的角為,則,算得,.故正確.故答案為:①③④.【點(diǎn)睛】此題考查根據(jù)幾何體求體積,外接球的表面積,異面直線夾角和截面面積最值,關(guān)鍵在于熟練掌握點(diǎn)線面位置關(guān)系的處理方法,補(bǔ)圖法作為解決體積和外接球問(wèn)題的常用方法,平常需要積累常見(jiàn)幾何體的補(bǔ)圖方法.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(1)見(jiàn)證明【解析】

(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;(1)問(wèn)題轉(zhuǎn)化為證ex﹣x1﹣xlnx﹣1>0,根據(jù)xlnx≤x(x﹣1),問(wèn)題轉(zhuǎn)化為只需證明當(dāng)x>0時(shí),ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),根據(jù)函數(shù)的單調(diào)性證明即可.【詳解】(1),,當(dāng),,當(dāng),,在上遞增,在上遞減,在取得極大值,極大值為,無(wú)極大值.(1)要證f(x)+1<ex﹣x1.即證ex﹣x1﹣xlnx﹣1>0,先證明lnx≤x﹣1,取h(x)=lnx﹣x+1,則h′(x)=,易知h(x)在(0,1)遞增,在(1,+∞)遞減,故h(x)≤h(1)=0,即lnx≤x﹣1,當(dāng)且僅當(dāng)x=1時(shí)取“=”,故xlnx≤x(x﹣1),ex﹣x1﹣xlnx≥ex﹣1x1+x﹣1,故只需證明當(dāng)x>0時(shí),ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),則k′(x)=ex﹣4x+1,令F(x)=k′(x),則F′(x)=ex﹣4,令F′(x)=0,解得:x=1ln1,∵F′(x)遞增,故x∈(0,1ln1]時(shí),F(xiàn)′(x)≤0,F(xiàn)(x)遞減,即k′(x)遞減,x∈(1ln1,+∞)時(shí),F(xiàn)′(x)>0,F(xiàn)(x)遞增,即k′(x)遞增,且k′(1ln1)=5﹣8ln1<0,k′(0)=1>0,k′(1)=e1﹣8+1>0,由零點(diǎn)存在定理,可知?x1∈(0,1ln1),?x1∈(1ln1,1),使得k′(x1)=k′(x1)=0,故0<x<x1或x>x1時(shí),k′(x)>0,k(x)遞增,當(dāng)x1<x<x1時(shí),k′(x)<0,k(x)遞減,故k(x)的最小值是k(0)=0或k(x1),由k′(x1)=0,得=4x1﹣1,k(x1)=﹣1+x1﹣1=﹣(x1﹣1)(1x1﹣1),∵x1∈(1ln1,1),∴k(x1)>0,故x>0時(shí),k(x)>0,原不等式成立.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,考查轉(zhuǎn)化思想,屬于中檔題.18、(Ⅰ)證明見(jiàn)詳解;(Ⅱ).【解析】

(Ⅰ)取中點(diǎn)為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】(Ⅰ)取的中點(diǎn),連接,.如下圖所示:因?yàn)?,分別是線段和的中點(diǎn),所以是梯形的中位線,所以.又,所以.因?yàn)椋?,所以四邊形為平行四邊形,所?所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.(Ⅱ)因?yàn)?,且平面,故可以為原點(diǎn),的方向?yàn)檩S正方向建立如圖所示的空間直角坐標(biāo)系,如下圖所示:不妨設(shè),則,所以,,,,.所以,,.設(shè)平面的法向量為,則所以可取.設(shè)直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點(diǎn)睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.19、(1)證明見(jiàn)解析,;(2)11202.【解析】

(1)由n,,成等差數(shù)列,可得,,兩式相減,由等比數(shù)列的定義可得是等比數(shù)列,可求數(shù)列的通項(xiàng)公式;(2)由(1)中的可求出,根據(jù)和求出數(shù)列,中的公共項(xiàng),分組求和,結(jié)合等比數(shù)列和等差數(shù)列的求和公式,可得答案.【詳解】(1)證明:因?yàn)閚,,成等差數(shù)列,所以,①所以.②①-②,得,所以.又當(dāng)時(shí),,所以,所以,故數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,所以,即.(2)根據(jù)(1)求解知,,,所以,所以數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列.又因?yàn)椋?,,,,,,,,,,所?【點(diǎn)睛】本題考查等比數(shù)列的定義,考查分組求和,屬于中檔題.20、(1).(2)【解析】

(1)設(shè)A的坐標(biāo)為A(x0,y0),由題意可得圓心C的坐標(biāo),求出C到直線x=1的距離.由半個(gè)弦長(zhǎng),圓心到直線的距離及半徑構(gòu)成直角三角形可得p的值,進(jìn)而求出拋物線的方程;(2)將拋物線的方程與圓的方程聯(lián)立可得韋達(dá)定理,進(jìn)而求出中點(diǎn)G的坐標(biāo),再求出直線OG的斜率的表達(dá)式,換元可得斜率的取值范圍.【詳解】(1)設(shè)A(x0,y0)且y02=2px0,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論