2023-2024學年四川省涼山木里中學高考仿真卷數學試卷含解析_第1頁
2023-2024學年四川省涼山木里中學高考仿真卷數學試卷含解析_第2頁
2023-2024學年四川省涼山木里中學高考仿真卷數學試卷含解析_第3頁
2023-2024學年四川省涼山木里中學高考仿真卷數學試卷含解析_第4頁
2023-2024學年四川省涼山木里中學高考仿真卷數學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年四川省涼山木里中學高考仿真卷數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.2.若,則的虛部是A.3 B. C. D.3.下列四個結論中正確的個數是(1)對于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.44.設復數滿足(為虛數單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知,,若,則向量在向量方向的投影為()A. B. C. D.6.已知奇函數是上的減函數,若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.47.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.8.已知變量的幾組取值如下表:12347若與線性相關,且,則實數()A. B. C. D.9.拋物線的焦點為,點是上一點,,則()A. B. C. D.10.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值11.設集合,集合,則=()A. B. C. D.R12.已知,則()A.5 B. C.13 D.二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,a=3,,B=2A,則cosA=_____.14.如圖是九位評委打出的分數的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數據的平均分為_______.15.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數列,則的離心率為__________.16.已知,那么______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設拋擲4次的得分為,求變量的分布列和數學期望.(2)當游戲得分為時,游戲停止,記得分的概率和為.①求;②當時,記,證明:數列為常數列,數列為等比數列.18.(12分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.19.(12分)已知,,為正數,且,證明:(1);(2).20.(12分)已知函數f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當x>0時,若函數g(x)(a>0)的最小值恒大于f(x),求實數a的取值范圍.21.(12分)心形線是由一個圓上的一個定點,當該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標原點的直角坐標系中.已知曲線的參數方程為(為參數).(1)求曲線的極坐標方程;(2)若曲線與相交于、、三點,求線段的長.22.(10分)已知函數,其中為自然對數的底數,.(1)若曲線在點處的切線與直線平行,求的值;(2)若,問函數有無極值點?若有,請求出極值點的個數;若沒有,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

需結合拋物線第一定義和圖形,得為等腰三角形,設準線與軸的交點為,過點作,再由三角函數定義和幾何關系分別表示轉化出,,結合比值與正切二倍角公式化簡即可【詳解】如圖,設準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質,三角函數的性質,數形結合思想,轉化與化歸思想,屬于中檔題2、B【解析】

因為,所以的虛部是.故選B.3、C【解析】

由題意,(1)中,根據全稱命題與存在性命題的關系,即可判定是正確的;(2)中,根據正態(tài)分布曲線的性質,即可判定是正確的;(3)中,由回歸直線方程的性質和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據全稱命題與存在性命題的關系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質,可知其對稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當時,可得成立,當時,只需滿足,所以“”是“”成立的充分不必要條件.【點睛】本題主要考查了命題的真假判定及應用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質、回歸直線方程的性質,以及基本不等式的應用等知識點的應用,逐項判定是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.4、A【解析】

由復數的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數對應的點所在象限的求解,涉及到復數的除法運算,屬于基礎題.5、B【解析】

由,,,再由向量在向量方向的投影為化簡運算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點睛】本題考查向量投影的幾何意義,屬于基礎題6、B【解析】

根據函數的奇偶性和單調性得到可行域,畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】奇函數是上的減函數,則,且,畫出可行域和目標函數,,即,表示直線與軸截距的相反數,根據平移得到:當直線過點,即時,有最小值為.故選:.【點睛】本題考查了函數的單調性和奇偶性,線性規(guī)劃問題,意在考查學生的綜合應用能力,畫出圖像是解題的關鍵.7、C【解析】

根據三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎題.8、B【解析】

求出,把坐標代入方程可求得.【詳解】據題意,得,所以,所以.故選:B.【點睛】本題考查線性回歸直線方程,由性質線性回歸直線一定過中心點可計算參數值.9、B【解析】

根據拋物線定義得,即可解得結果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.10、D【解析】

A.通過線面的垂直關系可證真假;B.根據線面平行可證真假;C.根據三棱錐的體積計算的公式可證真假;D.根據列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.11、D【解析】試題分析:由題,,,選D考點:集合的運算12、C【解析】

先化簡復數,再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數的運算,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知利用正弦定理,二倍角的正弦函數公式即可計算求值得解.【詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【點睛】本題主要考查了正弦定理,二倍角的正弦函數公式在解三角形中的應用,屬于基礎題.14、1【解析】

寫出莖葉圖對應的所有的數,去掉最高分,最低分,再求平均分.【詳解】解:所有的數為:77,78,82,84,84,86,88,93,94,共9個數,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個數,平均分為,故答案為1.【點睛】本題考查莖葉圖及平均數的計算,屬于基礎題.15、【解析】

設,,,根據勾股定理得出,而由橢圓的定義得出的周長為,有,便可求出和的關系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長,,成等差數列,設,,,而,根據勾股定理有:,解得:,由橢圓定義知:的周長為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點睛】本題考查橢圓的離心率以及橢圓的定義的應用,考查計算能力.16、【解析】

由已知利用誘導公式可求,進而根據同角三角函數基本關系即可求解.【詳解】∵,∴,,∴.故答案為:.【點睛】本小題主要考查誘導公式、同角三角函數的基本關系式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)分布列見解析,數學期望為6;(2)①;②證明見解析【解析】

(1)變量的所有可能取值為4,5,6,7,8,分別求出對應的概率,進而可求出變量的分布列和數學期望;(2)①得2分只需要拋擲一次正面向上或兩次反面向上,分別求出兩種情況的概率,進而可求得;②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,可知當且時,,結合,可推出,從而可證明數列為常數列;結合,可推出,進而可證明數列為等比數列.【詳解】(1)變量的所有可能取值為4,5,6,7,8.每次拋擲一次硬幣,正面向上的概率為,反面向上的概率也為,則,.所以變量的分布列為:45678故變量的數學期望為.(2)①得2分只需要拋擲一次正面向上或兩次反面向上,概率的和為.②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,故且時,有,則時,,所以,故數列為常數列;又,,所以數列為等比數列.【點睛】本題考查離散型隨機變量的分布列及數學期望,考查常數列及等比數列的證明,考查學生的計算求解能力與推理論證能力,屬于中檔題.18、(1)證明見解析;(2).【解析】

(1)連接,連接、交于點,并連接,則點為的中點,利用中位線的性質得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結論;(2)推導出平面,并計算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點,并連接,則點為的中點,、分別為、的中點,則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點,,,平面,且,因此,到平面的距離為.【點睛】本題考查線面平行的證明,同時也考查了點到平面距離的計算,考查推理能力與計算能力,屬于中等題.19、(1)證明見解析;(2)證明見解析.【解析】

(1)利用均值不等式即可求證;(2)利用,結合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.20、(Ⅰ);(Ⅱ)?!窘馕觥?/p>

(Ⅰ)分類討論,去掉絕對值,求得原絕對值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當時,原不等式可化為,此時不成立;當時,原不等式可化為,解得,即;當時,原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因為,當且僅當時等號成立,所以.當時,,所以.所以,解得,故實數的取值范圍為.【點睛】本題主要考查了絕對值不等式的解法,以及轉化與化歸思想,難度一般;常見的絕對值不等式的解法,法一:利用絕對值不等式的幾何意義求解,體現了數形結合的思想;法二:利用“零點分段法”求解,體現了分類討論的思想;法三:通過構造函數,利用函數的圖象求解,體現了函數與方程的思想.21、(1)();(2).【解析】

(1)化簡得到直線方程為,再利用極坐標公式計算得到答案.(2)聯立方程計算得到,,計算得到答案.【詳解】(1)由消得,即,是過原點且傾斜角為的直線,∴的極坐標方程為().(2)由得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論