內蒙古烏蘭察布市重點達標名校2024年中考押題數學預測卷含解析_第1頁
內蒙古烏蘭察布市重點達標名校2024年中考押題數學預測卷含解析_第2頁
內蒙古烏蘭察布市重點達標名校2024年中考押題數學預測卷含解析_第3頁
內蒙古烏蘭察布市重點達標名校2024年中考押題數學預測卷含解析_第4頁
內蒙古烏蘭察布市重點達標名校2024年中考押題數學預測卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古烏蘭察布市重點達標名校2024年中考押題數學預測卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.一次函數與的圖象如圖所示,給出下列結論:①;②;③當時,.其中正確的有()A.0個 B.1個 C.2個 D.3個2.下列博物院的標識中不是軸對稱圖形的是()A. B.C. D.3.如圖,在中,邊上的高是()A. B. C. D.4.如圖,某同學不小心把一塊三角形的玻璃打碎成三片,現在他要到玻璃店去配一塊完全一樣形狀的玻璃.那么最省事的辦法是帶()A.帶③去 B.帶②去 C.帶①去 D.帶①②去5.如圖,是的直徑,是的弦,連接,,,則與的數量關系為()A. B.C. D.6.已知:a、b是不等于0的實數,2a=3b,那么下列等式中正確的是()A.ab=23 B.a7.隨著“中國詩詞大會”節(jié)目的熱播,《唐詩宋詞精選》一書也隨之熱銷.如果一次性購買10本以上,超過10本的那部分書的價格將打折,并依此得到付款金額y(單位:元)與一次性購買該書的數量x(單位:本)之間的函數關系如圖所示,則下列結論錯誤的是()A.一次性購買數量不超過10本時,銷售價格為20元/本B.a=520C.一次性購買10本以上時,超過10本的那部分書的價格打八折D.一次性購買20本比分兩次購買且每次購買10本少花80元8.如果m的倒數是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20189.如果關于x的方程x2﹣x+1=0有實數根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥410.把一個多邊形紙片沿一條直線截下一個三角形后,變成一個18邊形,則原多邊形紙片的邊數不可能是()A.16 B.17 C.18 D.19二、填空題(本大題共6個小題,每小題3分,共18分)11.某校九年級(1)班40名同學中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個班同學年齡的中位數是___歲.12.一天晚上,小偉幫助媽媽清洗兩個只有顏色不同的有蓋茶杯,突然停電了,小偉只好把杯蓋和茶杯隨機地搭配在一起,則顏色搭配正確的概率是_____.13.的相反數是_____.14.如圖,利用標桿測量建筑物的高度,已知標桿高1.2,測得,則建筑物的高是__________.15.如圖,在平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(-3,0),B(0,6)分別在x軸,y軸上,反比例函數y=(x>0)的圖象經過點D,且與邊BC交于點E,則點E的坐標為__.16.如果一個正多邊形的中心角為72°,那么這個正多邊形的邊數是.三、解答題(共8題,共72分)17.(8分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數.(不必解答)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關知識便可解決這個問題.請結合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數為.在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數;在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變若BC=7,AD=1.請直接寫出線段BE的長為.18.(8分)如圖,兩座建筑物的水平距離BC為40m,從D點測得A點的仰角為30°,B點的俯角為10°,求建筑物AB的高度(結果保留小數點后一位).參考數據sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.19.(8分)某中學七、八年級各選派10名選手參加知識競賽,計分采用10分制,選手得分均為整數,成績達到6分或6分以上為合格,達到9分或10分為優(yōu)秀,這次競賽后,七、八年級兩支代表隊選手成績分布的條形統計圖和成績統計分析表如下,其中七年級代表隊得6分、10分的選手人數分別為a、b.隊別平均分中位數方差合格率優(yōu)秀率七年級6.7m3.4190%n八年級7.17.51.6980%10%(1)請依據圖表中的數據,求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說七年級的合格率、優(yōu)秀率均高于八年級;所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.20.(8分)如圖,四邊形ABCD內接于圓,對角線AC與BD相交于點E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求證:(1)CD⊥DF;(2)BC=2CD.21.(8分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當CF平分∠BCD時,寫出BC與CD的數量關系,并說明理由.22.(10分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當點E在邊BC上時,求證DE=EB;(2)如圖2,當點E在△ABC內部時,猜想ED和EB數量關系,并加以證明;(1)如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.23.(12分)(1)計算:.(2)解方程:x2﹣4x+2=024.如圖,直線y=2x+6與反比例函數y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數的圖像于點M,交AB于點N,連接BM.求m的值和反比例函數的表達式;直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

仔細觀察圖象,①k的正負看函數圖象從左向右成何趨勢即可;②a,b看y2=x+a,y1=kx+b與y軸的交點坐標;③看兩函數圖象的交點橫坐標;④以兩條直線的交點為分界,哪個函數圖象在上面,則哪個函數值大.【詳解】①∵y1=kx+b的圖象從左向右呈下降趨勢,

∴k<0正確;

②∵y2=x+a,與y軸的交點在負半軸上,

∴a<0,故②錯誤;

③當x<3時,y1>y2錯誤;

故正確的判斷是①.

故選B.【點睛】本題考查一次函數性質的應用.正確理解一次函數的解析式:y=kx+b(k≠0)y隨x的變化趨勢:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.2、A【解析】

如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,對題中選項進行分析即可.【詳解】A、不是軸對稱圖形,符合題意;B、是軸對稱圖形,不合題意;C、是軸對稱圖形,不合題意;D、是軸對稱圖形,不合題意;故選:A.【點睛】此題考查軸對稱圖形的概念,解題的關鍵在于利用軸對稱圖形的概念判斷選項正誤3、D【解析】

根據三角形的高線的定義解答.【詳解】根據高的定義,AF為△ABC中BC邊上的高.故選D.【點睛】本題考查了三角形的高的定義,熟記概念是解題的關鍵.4、A【解析】

第一塊和第二塊只保留了原三角形的一個角和部分邊,根據這兩塊中的任一塊均不能配一塊與原來完全一樣的;第三塊不僅保留了原來三角形的兩個角還保留了一邊,則可以根據ASA來配一塊一樣的玻璃.【詳解】③中含原三角形的兩角及夾邊,根據ASA公理,能夠唯一確定三角形.其它兩個不行.故選:A.【點睛】此題主要考查全等三角形的運用,熟練掌握,即可解題.5、C【解析】

首先根據圓周角定理可知∠B=∠C,再根據直徑所得的圓周角是直角可得∠ADB=90°,然后根據三角形的內角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,從而得到結果.【詳解】解:∵是的直徑,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故選C.【點睛】本題考查了圓周角定理及其逆定理和三角形的內角和定理,掌握相關知識進行轉化是解題的關鍵.6、B【解析】∵2a=3b,∴ab=3故選B.7、D【解析】

A、根據單價=總價÷數量,即可求出一次性購買數量不超過10本時,銷售單價,A選項正確;C、根據單價=總價÷數量結合前10本花費200元即可求出超過10本的那部分書的單價,用其÷前十本的單價即可得出C正確;B、根據總價=200+超過10本的那部分書的數量×16即可求出a值,B正確;D,求出一次性購買20本書的總價,將其與400相減即可得出D錯誤.此題得解.【詳解】解:A、∵200÷10=20(元/本),∴一次性購買數量不超過10本時,銷售價格為20元/本,A選項正確;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性購買10本以上時,超過10本的那部分書的價格打八折,C選項正確;B、∵200+16×(30﹣10)=520(元),∴a=520,B選項正確;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性購買20本比分兩次購買且每次購買10本少花40元,D選項錯誤.故選D.【點睛】考查了一次函數的應用,根據一次函數圖象結合數量關系逐一分析四個選項的正誤是解題的關鍵.8、A【解析】

因為兩個數相乘之積為1,則這兩個數互為倒數,如果m的倒數是﹣1,則m=-1,然后再代入m2018計算即可.【詳解】因為m的倒數是﹣1,所以m=-1,所以m2018=(-1)2018=1,故選A.【點睛】本題主要考查倒數的概念和乘方運算,解決本題的關鍵是要熟練掌握倒數的概念和乘方運算法則.9、D【解析】

由被開方數非負結合根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關于x的方程x2-x+1=0有實數根,∴,解得:k≥1.故選D.【點睛】本題考查了根的判別式,牢記“當△≥0時,方程有實數根”是解題的關鍵.10、A【解析】

一個n邊形剪去一個角后,剩下的形狀可能是n邊形或(n+1)邊形或(n-1)邊形.故當剪去一個角后,剩下的部分是一個18邊形,則這張紙片原來的形狀可能是18邊形或17邊形或19邊形,不可能是16邊形.故選A.【點睛】此題主要考查了多邊形,減去一個角的方法可能有三種:經過兩個相鄰點,則少了一條邊;經過一個頂點和一邊,邊數不變;經過兩條鄰邊,邊數增加一條.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】

根據中位數的定義找出第20和21個數的平均數,即可得出答案.【詳解】解:∵該班有40名同學,∴這個班同學年齡的中位數是第20和21個數的平均數.∵14歲的有1人,1歲的有21人,∴這個班同學年齡的中位數是1歲.【點睛】此題考查了中位數,中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(最中間兩個數的平均數),熟練掌握中位數的定義是本題的關鍵.12、【解析】分析:根據概率的計算公式.顏色搭配總共有4種可能,分別列出搭配正確和搭配錯誤的可能,進而求出各自的概率即可.詳解:用A和a分別表示第一個有蓋茶杯的杯蓋和茶杯;用B和b分別表示第二個有蓋茶杯的杯蓋和茶杯、經過搭配所能產生的結果如下:Aa、Ab、Ba、Bb.所以顏色搭配正確的概率是.故答案為:.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.13、【解析】

根據只有符號不同的兩個數互為相反數,可得答案.【詳解】的相反數是?.故答案為?.【點睛】本題考查的知識點是相反數,解題的關鍵是熟練的掌握相反數.14、10.5【解析】

先證△AEB∽△ABC,再利用相似的性質即可求出答案.【詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【點睛】本題考查了相似的判定和性質.利用相似的性質列出含所求邊的比例式是解題的關鍵.15、(-2,7).【解析】

解:過點D作DF⊥x軸于點F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點D的坐標為:(﹣7,2),∴反比例函數的解析式為:y=﹣①,點C的坐標為:(﹣4,8).設直線BC的解析式為:y=kx+b,則解得:∴直線BC的解析式為:y=﹣x+6②,聯立①②得:或(舍去),∴點E的坐標為:(﹣2,7).故答案為(﹣2,7).16、5【解析】試題分析:中心角的度數=,考點:正多邊形中心角的概念.三、解答題(共8題,共72分)17、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】

(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當60°<α≤110°時,如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當60°<α≤110°時,如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結論;第②種情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質即可得出結論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當60°<α<110°時,如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案為:7+或7﹣.【點睛】此題是三角形綜合題,主要考查全等三角形的判定和性質.等邊三角形的性質、等腰三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考??碱}型.18、建筑物AB的高度約為30.3m.【解析】分析:過點D作DE⊥AB,利用解直角三角形的計算解答即可.詳解:如圖,根據題意,BC=2,∠DCB=90°,∠ABC=90°.過點D作DE⊥AB,垂足為E,則∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四邊形DCBE為矩形,∴DE=BC=2.在Rt△ADE中,tan∠ADE=,∴AE=DE?tan30°=.在Rt△DEB中,tan∠BDE=,∴BE=DE?tan10°=2×0.18=7.2,∴AB=AE+BE=23.09+7.2=30.29≈30.3.答:建筑物AB的高度約為30.3m.點睛:考查解直角三角形的應用﹣仰角俯角問題,要求學生能借助俯角構造直角三角形并解直角三角形.19、(1)a=5,b=1;(2)6;20%;(3)八年級平均分高于七年級,方差小于七年級.【解析】試題分析:(1)根據題中數據求出a與b的值即可;(2)根據(1)a與b的值,確定出m與n的值即可;(3)從方差,平均分角度考慮,給出兩條支持八年級隊成績好的理由即可.試題解析:(1)根據題意得:解得a=5,b=1;(2)七年級成績?yōu)?,6,6,6,6,6,7,8,9,10,中位數為6,即m=6;優(yōu)秀率為=20%,即n=20%;(3)八年級平均分高于七年級,方差小于七年級,成績比較穩(wěn)定,故八年級隊比七年級隊成績好.考點:1.條形統計圖;2.統計表;3.加權平均數;4.中位數;5.方差.20、(1)詳見解析;(2)詳見解析.【解析】

(1)利用在同圓中所對的弧相等,弦相等,所對的圓周角相等,三角形內角和可證得∠CDF=90°,則CD⊥DF;(2)應先找到BC的一半,證明BC的一半和CD相等即可.【詳解】證明:(1)∵AB=AD,∴弧AB=弧AD,∠ADB=∠ABD.∵∠ACB=∠ADB,∠ACD=∠ABD,∴∠ACB=∠ADB=∠ABD=∠ACD.∴∠ADB=(180°﹣∠BAD)÷2=90°﹣∠DFC.∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,∴CD⊥DF.(2)過F作FG⊥BC于點G,∵∠ACB=∠ADB,又∵∠BFC=∠BAD,∴∠FBC=∠ABD=∠ADB=∠ACB.∴FB=FC.∴FG平分BC,G為BC中點,∵在△FGC和△DFC中,∴△FGC≌△DFC(ASA),∴∴BC=2CD.【點睛】本題用到的知識點為:同圓中,相等的弧所對的弦相等,所對的圓周角相等,注意把所求角的度數進行合理分割;證兩條線段相等,應證這兩條線段所在的三角形全等.21、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質,即可判定△FAE≌△CDE,即可得到CD=FA,再根據CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據E是AD的中點,可得AD=2CD,依據AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質以及平行四邊形的判定與性質,要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或對角的位置上,通過證明四邊形是平行四邊形達到上述目的.22、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】

(1)、根據等邊三角形的性質得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設CG=a,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論