第1章 解直角三角形(基礎(chǔ)、典型、易錯(cuò)、壓軸)分類專項(xiàng)訓(xùn)練(原卷版)_第1頁(yè)
第1章 解直角三角形(基礎(chǔ)、典型、易錯(cuò)、壓軸)分類專項(xiàng)訓(xùn)練(原卷版)_第2頁(yè)
第1章 解直角三角形(基礎(chǔ)、典型、易錯(cuò)、壓軸)分類專項(xiàng)訓(xùn)練(原卷版)_第3頁(yè)
第1章 解直角三角形(基礎(chǔ)、典型、易錯(cuò)、壓軸)分類專項(xiàng)訓(xùn)練(原卷版)_第4頁(yè)
第1章 解直角三角形(基礎(chǔ)、典型、易錯(cuò)、壓軸)分類專項(xiàng)訓(xùn)練(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第1章解直角三角形(基礎(chǔ)、典型、易錯(cuò)、壓軸)分類專項(xiàng)訓(xùn)練【基礎(chǔ)】一、單選題1.(2022·浙江·金華市南苑中學(xué)九年級(jí)階段練習(xí))已知在中,,,,則(

)A. B. C. D.2.(2022·浙江湖州·九年級(jí)期末)如圖,在△ABC中,∠C=90°,AB=5,AC=4,則tanB的值是(

)A. B. C. D.3.(2022·浙江麗水·一模)如圖,點(diǎn)A為邊上的任意一點(diǎn),作于點(diǎn)C,于點(diǎn)D,下列用線段比表示的值,錯(cuò)誤的是(

)A. B. C. D.4.(2022·浙江寧波·二模)如圖,在Rt中,為上一點(diǎn)且于,連結(jié),則(

)A. B. C. D.5.(2022·浙江溫州·一模)如圖,小羽利用儀器測(cè)量一電線桿AB的拉線AC的長(zhǎng)度,測(cè)得拉線AC與水平地面BC的夾角為,并測(cè)得C點(diǎn)到電線桿的距離BC為5米,則拉線AC的長(zhǎng)度為(

)A.米 B.米 C.米 D.米6.(2022·浙江·溫州市第十四中學(xué)三模)“兒童放學(xué)歸來(lái)早,忙趁東風(fēng)放紙鳶”,小明周末在龍?zhí)豆珗@草坪上放風(fēng)箏,已知風(fēng)箏拉線長(zhǎng)100米且拉線與地面夾角為(如圖所示,假設(shè)拉線是直的,小明身高忽略不計(jì)),則風(fēng)箏離地面的高度可以表示為()A. B. C. D.7.(2022·浙江·九年級(jí)專題練習(xí))如圖,小慧的眼睛離地面的距離為,她用三角尺測(cè)量廣場(chǎng)上的旗桿高度,仰角恰與三角板角的邊重合,量得小慧與旗桿之間的距離為,則旗桿的高度(單位:)為(

)A.6.6 B.11.6 C. D.二、填空題8.(2022·浙江·九年級(jí)專題練習(xí))計(jì)算:sin30°=____.9.(2022·浙江寧波·九年級(jí)專題練習(xí))比較與的大小,結(jié)果為:______.10.(2022·浙江湖州·模擬預(yù)測(cè))在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB=___.三、解答題11.(2022·浙江金華·三模)計(jì)算:12.(2022·浙江金華·九年級(jí)期中)計(jì)算:.13.(2022·浙江·九年級(jí)專題練習(xí))計(jì)算:14.(2022·浙江金華·一模)計(jì)算:15.(2022·浙江寧波·九年級(jí)期末)如圖,某漁船向正東方向以14海里/時(shí)的速度航行,在處測(cè)得小島在北偏東方向,2小時(shí)后漁船到達(dá)處,測(cè)得小島在北偏東方向,已知該島周圍20海里范圍內(nèi)有暗礁.(參考數(shù)據(jù):)(1)求處距離小島的距離(精確到海里);(2)為安全起見(jiàn),漁船在處向東偏南轉(zhuǎn)了繼續(xù)航行,通過(guò)計(jì)算說(shuō)明船是否安全?【典型】一、單選題1.(2022·浙江紹興·一模)如圖,A,B,C,三點(diǎn)在正方形網(wǎng)格線的交點(diǎn)處,若將繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到,則的值為(

)A. B. C. D.二、填空題2.(2021·浙江溫州·三模)如圖,在直角坐標(biāo)系中有一直角三角板的直角頂點(diǎn)C落在x軸的負(fù)半軸上,點(diǎn)A,B分別落在反比例函數(shù)y=的兩個(gè)分支上,∠CAB=30°,若AC邊與y軸相交于AC的中點(diǎn)D,點(diǎn)A的縱坐標(biāo)為2,則k的值為_(kāi)____.三、解答題3.(2022·浙江衢州·模擬預(yù)測(cè))在等腰△ABC中,∠B=90°,AM是△ABC的角平分線,過(guò)點(diǎn)M作MN⊥AC于點(diǎn)N,∠EMF=135°.將∠EMF繞點(diǎn)M旋轉(zhuǎn),使∠EMF的兩邊交直線AB于點(diǎn)E,交直線AC于點(diǎn)F,請(qǐng)解答下列問(wèn)題:(1)當(dāng)∠EMF繞點(diǎn)M旋轉(zhuǎn)到如圖①的位置時(shí),求證:BE+CF=BM;(2)當(dāng)∠EMF繞點(diǎn)M旋轉(zhuǎn)到如圖②,圖③的位置時(shí),請(qǐng)分別寫出線段BE,CF,BM之間的數(shù)量關(guān)系,不需要證明;(3)在(1)和(2)的條件下,tan∠BEM=,AN=+1,則BM=,CF=.4.(2021·浙江杭州·九年級(jí)期末)如圖,在中,,垂足為D,.(1)求的值;(2)過(guò)點(diǎn)B作,若,求的長(zhǎng).5.(2020·浙江臺(tái)州·二模)某校組織數(shù)學(xué)興趣探究活動(dòng),愛(ài)思考的小實(shí)同學(xué)在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí)發(fā)現(xiàn),兩條中線互相垂直的三角形稱為“中垂三角形”.如圖1、圖2、圖3中,、是的中線,于點(diǎn),像這樣的三角形均稱為“中垂三角形”.【特例探究】(1)如圖1,當(dāng),時(shí),_____,______;如圖2,當(dāng),時(shí),_____,______;【歸納證明】(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想、、三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論;【拓展證明】(3)如圖4,在中,,,、、分別是邊、的中點(diǎn),連結(jié)并延長(zhǎng)至,使得,連結(jié),當(dāng)于點(diǎn)時(shí),求的長(zhǎng).6.(2021·浙江杭州·一模)已知在平面直角坐標(biāo)系中,點(diǎn),以線段為直徑作圓,圓心為,直線交于點(diǎn),連接.(1)求證:直線是的切線;(2)點(diǎn)為軸上任意一動(dòng)點(diǎn),連接交于點(diǎn),連接:①當(dāng)時(shí),求所有點(diǎn)的坐標(biāo)(直接寫出);②求的最大值.【易錯(cuò)】一.選擇題(共6小題)1.(2022春?鄞州區(qū)校級(jí)月考)如圖,先鋒村準(zhǔn)備在坡角為α的山坡上栽樹,要求相鄰兩樹之間的水平距離為5米,那么這兩樹在坡面上的距離AB為()A.5cosα B. C.5sinα D.2.(2022春?蘭溪市月考)若∠A是銳角,且sinA=,則()A.0°<∠A<30° B.30°<∠A<45° C.45°<∠A<60° D.60°<∠A<90°3.(2022?鹿城區(qū)校級(jí)三模)鐵路道口的欄桿如圖.已知欄桿長(zhǎng)為3米,當(dāng)欄桿末端從水平位置上升到點(diǎn)C處時(shí),欄桿前端從水平位置下降到點(diǎn)A處,下降的垂直距離AD為0.5米(欄桿的粗細(xì)忽略不計(jì)),上升前后欄桿的夾角為α,則欄桿末端上升的垂直距離CE的長(zhǎng)為()A.米 B.米 C.(3tanα﹣0.5)米 D.(3sinα﹣0.5)米4.(2022?西湖區(qū)模擬)如圖,邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、E在格點(diǎn)上,連接AE、BC,點(diǎn)D在BC上且滿足AD⊥BC,則∠AED的正切值是()A. B.2 C. D.5.(2022?瑞安市二模)某村計(jì)劃挖一條引水渠,渠道的橫斷面ABCD是一個(gè)軸對(duì)稱圖形(如圖所示).若渠底寬BC為2m,渠道深BH為3m,渠壁CD的傾角為α,則渠口寬AD為()A.(2+3?tanα)m B.(2+6?tanα)m C.(2+)m D.(2+)m6.(2022春?杭州月考)如圖,在△ABC中,AB=AC,BC=8,E為AC邊的中點(diǎn),線段BE的垂直平分線交邊BC于點(diǎn)D.設(shè)BD=x,tan∠ACB=y(tǒng),則x與y滿足關(guān)系式為()A.x﹣y2=3 B.2x﹣y2=6 C.3x﹣y2=9 D.4x﹣y2=12二.填空題(共7小題)7.(2022秋?鄞州區(qū)校級(jí)月考)如圖,在Rt△ABC中,∠C=90°,若sinA=,則cosB=.8.(2022?長(zhǎng)興縣開(kāi)學(xué))計(jì)算tan45°的正確結(jié)果是.9.(2022春?定海區(qū)期末)公元前240年前后,在希臘的亞歷山大城圖書館當(dāng)館長(zhǎng)的埃拉托色尼通過(guò)測(cè)得有關(guān)數(shù)據(jù),求得了地球圓周的長(zhǎng)度,他是如何測(cè)量的呢?如圖所示,由于太陽(yáng)距離地球很遠(yuǎn),太陽(yáng)射來(lái)的光線可以看作平行線,在同時(shí)刻,光線與A城和地心的連線OP所夾的銳角記為∠1,光線與B城和地心的連線OQ重合,通過(guò)測(cè)量A,B兩城間的路程(即弧AB)和∠1的度數(shù),利用圓的有關(guān)知識(shí),地球圓周的長(zhǎng)度就可以大致算出來(lái)了.已知弧AB的長(zhǎng)度約為800km,若∠1≈7.2°,則地球的周長(zhǎng)約為km.10.(2022?麗水一模)如圖1的一湯碗,其截面為軸對(duì)稱圖形,碗體ECDF呈半圓形狀(碗體厚度不計(jì)),直徑EF=26cm,碗底AB=10cm,∠A=∠B=90°,AC=BD=3cm.(1)如圖1,當(dāng)湯碗平放在桌面MN上時(shí),碗的高度是cm.(2)如圖2,將碗放在桌面MN上,繞點(diǎn)B緩緩傾斜倒出部分湯,當(dāng)碗內(nèi)湯的深度最小時(shí),tan∠ABM的值是.11.(2022?蕭山區(qū)校級(jí)一模)如圖,在△ABC中,sinB=,tanC=,AB=4,則AC的長(zhǎng)為.12.(2022秋?鄞州區(qū)校級(jí)月考)在△ABC中,如果∠A、∠B滿足|tanA﹣1|+(cosB﹣)2=0,那么∠C=.13.(2022?富陽(yáng)區(qū)二模)如圖,在平行四邊形ABCD中,AC與BD交于點(diǎn)O,∠OAB=45°,∠ABO=60°,BD=8.點(diǎn)P從B點(diǎn)出發(fā)沿著BD方向運(yùn)動(dòng),到達(dá)點(diǎn)O停止運(yùn)動(dòng).連接AP,點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)為Q.當(dāng)點(diǎn)Q落在AC上時(shí),則OQ=,在運(yùn)動(dòng)過(guò)程中,點(diǎn)Q到直線BD的距離的最大值為.三.解答題(共8小題)14.(2022?嘉興一模)倡導(dǎo)“低碳環(huán)?!弊尅熬G色出行”成為一種生活常態(tài).嘉嘉買了一輛自行車作為代步工具,各部件的名稱如圖1所示,該自行車的車輪半徑為30cm,圖2是該自行車的車架示意圖,立管AB=27cm,上管AC=36cm,且它們互相垂直,座管AE可以伸縮,點(diǎn)A,B,E在同一條直線上,且∠ABD=75°.(1)求下管BC的長(zhǎng);(2)若后下叉BD與地面平行,座管AE伸長(zhǎng)到18cm,求座墊E離地面的距離.(結(jié)果精確到1cm,參考數(shù)據(jù)sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)15.(2022春?磐安縣期中)某數(shù)學(xué)興趣小組通過(guò)調(diào)查研究把“如何測(cè)量嵩岳寺塔的高度”作為一項(xiàng)課題活動(dòng),他們制訂了測(cè)量方案,并利用課余時(shí)間實(shí)地測(cè)量.課題測(cè)量嵩岳寺塔的高度測(cè)量工具測(cè)量角度的儀器,皮尺等測(cè)量方案在點(diǎn)C處放置高為1.3米的測(cè)角儀CD,此時(shí)測(cè)得塔頂端A的仰角為45°,再沿BC方向走22米到達(dá)點(diǎn)E處,此時(shí)測(cè)得塔頂端A的仰角為32°.說(shuō)明:E、C、B三點(diǎn)在同一水平線上請(qǐng)你根據(jù)表中信息結(jié)合示意圖幫助該數(shù)學(xué)興趣小組求嵩岳寺塔AB的高度.(精確到0.1米,參考數(shù)據(jù):sin32°≈0.52,cos32°≈0.84,tan32°≈0.62)16.(2022?溫嶺市一模)如圖所示是國(guó)際標(biāo)準(zhǔn)的籃球架,某興趣小組想知道籃筐中心A到地面的高度,現(xiàn)測(cè)得如下數(shù)據(jù):CD垂直于地面,CD=255cm,BC=90cm,AB平行于地面,∠ABC=145°,請(qǐng)你利用學(xué)過(guò)的知識(shí)幫他們求出該高度.(結(jié)果精確到1cm,參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)17.(2022?金東區(qū)三模)如圖,一個(gè)書架上放著8個(gè)完全一樣的長(zhǎng)方體檔案盒,其中左邊7個(gè)檔案盒緊貼書架內(nèi)側(cè)豎放,右邊一個(gè)檔案盒自然向左斜放,檔案盒的頂點(diǎn)D在書架底部,頂點(diǎn)F靠在書架右側(cè),頂點(diǎn)C靠在檔案盒上,若書架內(nèi)側(cè)長(zhǎng)為60cm,∠CDE=53°,檔案盒長(zhǎng)度AB=35cm.(參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)(1)求點(diǎn)C到書架底部距離CE的長(zhǎng)度;(2)求ED的長(zhǎng)度;(3)求出該書架中最多能放幾個(gè)這樣的檔案盒.18.(2022?鹿城區(qū)校級(jí)三模)如圖1是某路燈,圖2是此路燈在鉛垂面內(nèi)的示意圖,燈芯A在地面上的照射區(qū)域BC長(zhǎng)為7米,從B,C兩處測(cè)得燈芯A的仰角分別為α和β,且tanα=6,tanβ=1.(1)求燈芯A到地面的高度.(2)立柱DE的高為6米,燈桿DF與立柱DE的夾角∠D=120°,燈芯A到頂部F的距離為1米,且DF⊥AF,求燈桿DF的長(zhǎng)度.19.(2022?諸暨市模擬)圖1是一種可折疊臺(tái)燈,它放置在水平桌面上,將其抽象成圖2,其中點(diǎn)B,E,D均為可轉(zhuǎn)動(dòng)點(diǎn),現(xiàn)測(cè)得AB=BE=ED=CD=20cm,經(jīng)多次調(diào)試發(fā)現(xiàn)當(dāng)點(diǎn)B,E都在CD的垂直平分線上時(shí)(如圖3所示)放置最平穩(wěn).(1)求放置最平穩(wěn)時(shí)燈座DC與燈桿DE的夾角的大??;(2)當(dāng)A點(diǎn)到水平桌面(CD所在直線)的距離為42cm﹣43cm時(shí),臺(tái)燈光線最佳,能更好的保護(hù)視力.若臺(tái)燈放置最平穩(wěn)時(shí),將∠ABE調(diào)節(jié)到105°,試通過(guò)計(jì)算說(shuō)明此時(shí)光線是否為最佳.(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)20.(2022?北侖區(qū)一模)某鎮(zhèn)為創(chuàng)建特色小鎮(zhèn),助力鄉(xiāng)村振興,決定在轄區(qū)的一條河上修建一座步行觀光橋.如圖,該河旁有一座小山,山高BC=100m,坡面AB的坡比為1:0.7(注:坡比是指坡面的鉛垂高度與水平寬度的比),點(diǎn)C、A與河岸E,F(xiàn)在同一水平線上,從山頂B處測(cè)得河岸E和對(duì)岸F的俯角∠DBE,∠DBF分別為45°,28°.(1)求山腳A到河岸E的距離;(2)若在此處建橋,試求河寬EF的長(zhǎng)度.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)21.(2022?柯城區(qū)二模)圖①是某小區(qū)折疊道閘的實(shí)景圖,圖②是其工作示意圖,道閘由垂直于地面的立柱AB,CD和折疊桿“AE﹣EF”組成,其中AB=CD=1.2m,AB,CD之間的水平距離BD=2.5m,AE=1.5m.道閘工作時(shí),折疊桿“AE﹣EF”可繞點(diǎn)A在一定范圍內(nèi)轉(zhuǎn)動(dòng),張角為∠BAE(90°≤∠BAE≤150°),同時(shí)桿EF始終與地面BD保持平行.(參考數(shù)據(jù):≈1.414,≈1.732)(1)當(dāng)張角∠BAE為135°時(shí),求桿EF與地面BD之間的距離(結(jié)果精確到0.01m);(2)試通過(guò)計(jì)算判斷寬度為1.8m,高度為2.45m的小型廂式貨車能否正常通過(guò)此道閘?

【壓軸】一、單選題1.(2021·浙江·溫州市第二中學(xué)三模)如圖,扇形AOB中,∠AOB=90°.在扇形內(nèi)放一個(gè)Rt△EDF,其中DE=10,DF=9,直角頂點(diǎn)D在半徑OB上,OD=2DB,點(diǎn)E在半徑OA上,點(diǎn)F在弧上.則半徑OA的長(zhǎng)為(

)A. B.2 C. D.二、填空題2.(2022·浙江·溫州市第二實(shí)驗(yàn)中學(xué)二模)飛機(jī)導(dǎo)航系統(tǒng)的正常工作離不開(kāi)人造衛(wèi)星的信號(hào)傳輸(如圖1).五顆同軌道同步衛(wèi)星,其位置A,B,C,D,E如圖2所示,是它們的運(yùn)行軌道,弧AC度數(shù)為120°,點(diǎn)B到點(diǎn)C和點(diǎn)A的距離相等,于M,AD交BE于N,交CE于H,連結(jié)CD,AE.已知一架飛機(jī)從M飛到N的直線距離為8千公里,則軌道的半徑為_(kāi)_____千公里.當(dāng)時(shí),則線段AE,CD的長(zhǎng)度之和為_(kāi)_____千公里.三、解答題3.(2022·浙江·寧波外國(guó)語(yǔ)學(xué)校九年級(jí)階段練習(xí))已知一個(gè)直角三角形紙片,其中,,,點(diǎn)、分別是、邊上的一動(dòng)點(diǎn),連接,將紙片的一角沿折疊.(1)若折疊后點(diǎn)落在邊上的點(diǎn)處(如圖,且,求的長(zhǎng);(2)若,折疊后點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn)(如圖,連結(jié).①若點(diǎn)恰好在邊上(如圖,求的長(zhǎng).②求的最小值.4.(2022·浙江·義烏市賓王中學(xué)九年級(jí)階段練習(xí))如圖1,小明將一張直角梯形紙片沿虛線剪開(kāi),得到矩形和三角形兩張紙片,測(cè)得,.在進(jìn)行如下操作時(shí)遇到了下列幾個(gè)問(wèn)題,請(qǐng)你幫助解決.(1)如圖2,將的頂點(diǎn)G移到矩形的頂點(diǎn)B處,再將三角形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使E點(diǎn)落在邊上,此時(shí)EF恰好經(jīng)過(guò)點(diǎn)A,請(qǐng)證明:;(2)如圖3,在(1)的條件下,小明先將的邊和矩形的邊重合,然后將△EFG沿直線向右平移,至F點(diǎn)與B重合時(shí)停止.在平移過(guò)程中,設(shè)G點(diǎn)平移的距離為x,兩紙片重疊部分面積為y,求在平移的整個(gè)過(guò)程中,y與x的函數(shù)關(guān)系式.(3)如圖,在(1)的條件下,小明把該圖形放在直角坐標(biāo)系中,使B(G)為坐標(biāo)原點(diǎn)為x軸,在x軸和y上分別找P,Q兩點(diǎn)使與相似,直接寫出P點(diǎn)的坐標(biāo).5.(2022·浙江寧波·一模)如圖1,在中,,于D,E為邊上的點(diǎn),過(guò)A、D、E三點(diǎn)的交于F,連接,.(1)求證:.(2)若,求的面積.(3)如圖2,點(diǎn)P為上一動(dòng)點(diǎn),連接,,.①若P為的中點(diǎn),設(shè)為x,的面積為S,求S關(guān)于x的函數(shù)表達(dá)式;②在點(diǎn)P運(yùn)動(dòng)過(guò)程中,試探索,,之間的數(shù)量關(guān)系,并證明.6.(2022·浙江麗水·一模)在菱形中,,,點(diǎn)E在邊上,,點(diǎn)P是邊上一個(gè)動(dòng)點(diǎn),連結(jié),將沿翻折得到.(1)當(dāng)時(shí),求的度數(shù);(2)若點(diǎn)F落在對(duì)角線上,求證:;(3)若點(diǎn)P在射線上運(yùn)動(dòng),設(shè)直線與直線交于點(diǎn)H,問(wèn)當(dāng)為何值時(shí),為直角三角形.7.(2022·浙江·溫州市第二實(shí)驗(yàn)中學(xué)二模)如圖1,中,,,,延長(zhǎng)BC至D,使,E為AC邊上一點(diǎn),連結(jié)DE并延長(zhǎng)交AB于點(diǎn)F.作的外接圓,EH為的直徑,射線AC交于點(diǎn)G,連結(jié)GH.(1)求證:.(2)①如圖2,當(dāng)時(shí),求GH的長(zhǎng)及的值.②如圖3,隨著E點(diǎn)在CA邊上從下向上移動(dòng),的值是否發(fā)生變化,若不變,請(qǐng)你求出的值,若變化,求出的范圍.(3)若要使圓心O落在的內(nèi)部(不包括邊上),求CE的長(zhǎng)度范圍.8.(2022·浙江金華·三模)在四邊形中,,,.(1)如圖1,①求證:;②求的正切值;(2)如圖2,動(dòng)點(diǎn)從點(diǎn)出發(fā),以1個(gè)單位每秒速度,沿折線運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā),以2個(gè)單位每秒速度,沿射線運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn),同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,以為斜邊作,使點(diǎn)落在線段或上,在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)不再連接其他線段,且圖中存在與相似的三角形時(shí),求的值.9.(2022·浙江溫州·九年級(jí)專題練習(xí))如圖,在矩形中,于點(diǎn),交邊于點(diǎn).平分交于點(diǎn),并經(jīng)過(guò)邊的中點(diǎn).(1)求證:.(2)求的值.(3)若,試在上找一點(diǎn)(不與,重合),使直線經(jīng)過(guò)四邊形一邊的中點(diǎn),求所有滿足條件的的值.10.(2021·浙江·紹興市第一初級(jí)中學(xué)九年級(jí)階段練習(xí))定義:如果一個(gè)四邊形能被一條直線分割成一個(gè)平行四邊形和一個(gè)等腰三角形,那么稱這個(gè)四邊形為平等四邊形,這條分割線為平等線.(1)如圖1,在四邊形ABCD中,ADBC,AD=AB=2,∠B=30°,若四邊形ABCD為平等四邊形,直接寫出BC邊可能的長(zhǎng);(2)如圖2,AD為四邊形EBCD的平等線,且BC=ED,求證:BD2﹣BC2=AB?BE;(3)如圖3,在(2)的條件下,作平等四邊形EBCD的外接圓,連接AC,若∠BAC=∠BDE,那么BD與BC有何數(shù)量關(guān)系?并說(shuō)明理由.11.(2021·浙江·溫州市第二中學(xué)二模)如圖,在矩形ABCD中,AD>AB,∠A的平分線AF交BC邊于點(diǎn)E,交DC的廷長(zhǎng)線于點(diǎn)F.取EF的中點(diǎn)G,連結(jié)DG(1)求證:BC=DF.(2)當(dāng)△ADE≌△FDG時(shí),求tan∠DEC的值.(3)連結(jié)BD,BG,若S△ADE=2S△DEG.①求S△DBG:S△DGF的值.②記BD與AE的交點(diǎn)為M,P是線段AM上一個(gè)動(dòng)點(diǎn).將△ABP沿BP翻折得到△A′BP,A′B與AG交于點(diǎn)Q,當(dāng)與△BDG的一邊平行時(shí),求的值.12.(2022·浙江·衢州市實(shí)驗(yàn)學(xué)校教育集團(tuán)(衢州學(xué)院附屬學(xué)校教育集團(tuán))九年級(jí)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論