河北省保定市唐縣重點名校2023-2024學年中考數(shù)學最后一模試卷含解析_第1頁
河北省保定市唐縣重點名校2023-2024學年中考數(shù)學最后一模試卷含解析_第2頁
河北省保定市唐縣重點名校2023-2024學年中考數(shù)學最后一模試卷含解析_第3頁
河北省保定市唐縣重點名校2023-2024學年中考數(shù)學最后一模試卷含解析_第4頁
河北省保定市唐縣重點名校2023-2024學年中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河北省保定市唐縣重點名校2023-2024學年中考數(shù)學最后一模試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算正確的是()A. B.C.a(chǎn)2?a3=a5 D.(2a)3=2a32.如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接AC,若∠CAB=22.5°,CD=8cm,則⊙O的半徑為()A.8cm B.4cm C.4cm D.5cm3.如圖,在矩形ABCD中,E是AD上一點,沿CE折疊△CDE,點D恰好落在AC的中點F處,若CD=,則△ACE的面積為()A.1 B. C.2 D.24.如圖,AB∥CD,點E在線段BC上,若∠1=40°,∠2=30°,則∠3的度數(shù)是()A.70° B.60° C.55° D.50°5.在平面直角坐標系xOy中,將點N(–1,–2)繞點O旋轉(zhuǎn)180°,得到的對應(yīng)點的坐標是()A.(1,2) B.(–1,2)C.(–1,–2) D.(1,–2)6.如圖,,,則的大小是A. B. C. D.7.如圖,△ABC是⊙O的內(nèi)接三角形,∠BOC=120°,則∠A等于()A.50° B.60° C.55° D.65°8.如圖是一個正方體被截去一角后得到的幾何體,從上面看得到的平面圖形是()A. B. C. D.9.太原市出租車的收費標準是:白天起步價8元(即行駛距離不超過3km都需付8元車費),超過3km以后,每增加1km,加收1.6元(不足1km按1km計),某人從甲地到乙地經(jīng)過的路程是xkm,出租車費為16元,那么x的最大值是()A.11 B.8 C.7 D.510.如圖,圖1是由5個完全相同的正方體堆成的幾何體,現(xiàn)將標有E的正方體平移至如圖2所示的位置,下列說法中正確的是()A.左、右兩個幾何體的主視圖相同B.左、右兩個幾何體的左視圖相同C.左、右兩個幾何體的俯視圖不相同D.左、右兩個幾何體的三視圖不相同11.某果園2011年水果產(chǎn)量為100噸,2013年水果產(chǎn)量為144噸,求該果園水果產(chǎn)量的年平均增長率.設(shè)該果園水果產(chǎn)量的年平均增長率為x,則根據(jù)題意可列方程為()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=14412.現(xiàn)有三張背面完全相同的卡片,正面分別標有數(shù)字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機抽取兩張,則這兩張卡片正面數(shù)字之和為正數(shù)的概率是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在半徑為2cm,圓心角為90°的扇形OAB中,分別以O(shè)A、OB為直徑作半圓,則圖中陰影部分的面積為_____.14.若有意義,則x的范圍是_____.15.若二次根式有意義,則x的取值范圍為__________.16.如果不等式組的解集是x<2,那么m的取值范圍是_____17.如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.18.如圖,為保護門源百里油菜花海,由“芬芳浴”游客中心A處修建通往百米觀景長廊BC的兩條棧道AB,AC.若∠B=56°,∠C=45°,則游客中心A到觀景長廊BC的距離AD的長約為_____米.(sin56°≈0.8,tan56°≈1.5)三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某初級中學正在展開“文明城市創(chuàng)建人人參與,志愿服務(wù)我當先行”的“創(chuàng)文活動”為了了解該校志愿者參與服務(wù)情況,現(xiàn)對該校全體志愿者進行隨機抽樣調(diào)查.根據(jù)調(diào)查數(shù)據(jù)繪制了如下所示不完整統(tǒng)計圖.條形統(tǒng)計圖中七年級、八年級、九年級、教師分別指七年級、八年級、九年級、教師志愿者中被抽到的志愿者,扇形統(tǒng)計圖中的百分數(shù)指的是該年級被抽到的志愿者數(shù)與樣本容量的比.請補全條形統(tǒng)計圖;若該校共有志愿者600人,則該校九年級大約有多少志愿者?20.(6分)如圖,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點均在小正方形的頂點上.在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點C和點D均在小正方形的頂點上;在圖中畫出以線段AB為一腰,底邊長為2的等腰三角形ABE,點E在小正方形的頂點上,連接CE,請直接寫出線段CE的長.21.(6分)某水果基地計劃裝運甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運甲、乙、丙三種水果的重量及利潤.甲乙丙每輛汽車能裝的數(shù)量(噸)423每噸水果可獲利潤(千元)574(1)用8輛汽車裝運乙、丙兩種水果共22噸到A地銷售,問裝運乙、丙兩種水果的汽車各多少輛?(2)水果基地計劃用20輛汽車裝運甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設(shè)裝運甲水果的汽車為m輛,則裝運乙、丙兩種水果的汽車各多少輛?(結(jié)果用m表示)(3)在(2)問的基礎(chǔ)上,如何安排裝運可使水果基地獲得最大利潤?最大利潤是多少?22.(8分)AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點,連接CE,BE,若BE=2,求CE的長.23.(8分)試探究:小張在數(shù)學實踐活動中,畫了一個△ABC,∠ACB=90°,BC=1,AC=2,再以點B為圓心,BC為半徑畫弧交AB于點D,然后以A為圓心,AD長為半徑畫弧交AC于點E,如圖1,則AE=;此時小張發(fā)現(xiàn)AE2=AC?EC,請同學們驗證小張的發(fā)現(xiàn)是否正確.拓展延伸:小張利用圖1中的線段AC及點E,構(gòu)造AE=EF=FC,連接AF,得到圖2,試完成以下問題:(1)求證:△ACF∽△FCE;(2)求∠A的度數(shù);(3)求cos∠A的值;應(yīng)用遷移:利用上面的結(jié)論,求半徑為2的圓內(nèi)接正十邊形的邊長.24.(10分)如圖,平面直角坐標系xOy中,已知點A(0,3),點B(,0),連接AB,若對于平面內(nèi)一點C,當△ABC是以AB為腰的等腰三角形時,稱點C是線段AB的“等長點”.(1)在點C1(﹣2,3+2),點C2(0,﹣2),點C3(3+,﹣)中,線段AB的“等長點”是點________;(2)若點D(m,n)是線段AB的“等長點”,且∠DAB=60°,求點D的坐標;(3)若直線y=kx+3k上至少存在一個線段AB的“等長點”,求k的取值范圍.25.(10分)根據(jù)函數(shù)學習中積累的知識與經(jīng)驗,李老師要求學生探究函數(shù)y=+1的圖象.同學們通過列表、描點、畫圖象,發(fā)現(xiàn)它的圖象特征,請你補充完整.(1)函數(shù)y=+1的圖象可以由我們熟悉的函數(shù)的圖象向上平移個單位得到;(2)函數(shù)y=+1的圖象與x軸、y軸交點的情況是:;(3)請你構(gòu)造一個函數(shù),使其圖象與x軸的交點為(2,0),且與y軸無交點,這個函數(shù)表達式可以是.26.(12分)(1)計算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化簡,再求值:(x﹣)÷,其中x=,y=﹣1.27.(12分)如圖,在△ABC中,以AB為直徑的⊙O交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,且DH是⊙O的切線,連接DE交AB于點F.(1)求證:DC=DE;(2)若AE=1,,求⊙O的半徑.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據(jù)算術(shù)平方根的定義、二次根式的加減運算、同底數(shù)冪的乘法及積的乘方的運算法則逐一計算即可判斷.【詳解】解:A、=2,此選項錯誤;B、不能進一步計算,此選項錯誤;C、a2?a3=a5,此選項正確;D、(2a)3=8a3,此選項計算錯誤;故選:C.【點睛】本題主要考查二次根式的加減和冪的運算,解題的關(guān)鍵是掌握算術(shù)平方根的定義、二次根式的加減運算、同底數(shù)冪的乘法及積的乘方的運算法則.2、C【解析】

連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出OC的長,即為圓的半徑.【詳解】解:連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴故選:C.【點睛】此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及圓周角定理,熟練掌握垂徑定理是解本題的關(guān)鍵.3、B【解析】

由折疊的性質(zhì)可得CD=CF=,DE=EF,AC=,由三角形面積公式可求EF的長,即可求△ACE的面積.【詳解】解:∵點F是AC的中點,∴AF=CF=AC,∵將△CDE沿CE折疊到△CFE,∴CD=CF=,DE=EF,∴AC=,在Rt△ACD中,AD==1.∵S△ADC=S△AEC+S△CDE,∴×AD×CD=×AC×EF+×CD×DE∴1×=EF+DE,∴DE=EF=1,∴S△AEC=××1=.故選B.【點睛】本題考查了翻折變換,勾股定理,熟練運用三角形面積公式求得DE=EF=1是解決本題的關(guān)鍵.4、A【解析】試題分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故選A.考點:平行線的性質(zhì).5、A【解析】

根據(jù)點N(–1,–2)繞點O旋轉(zhuǎn)180°,所得到的對應(yīng)點與點N關(guān)于原點中心對稱求解即可.【詳解】∵將點N(–1,–2)繞點O旋轉(zhuǎn)180°,∴得到的對應(yīng)點與點N關(guān)于原點中心對稱,∵點N(–1,–2),∴得到的對應(yīng)點的坐標是(1,2).故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),由旋轉(zhuǎn)的性質(zhì)得到的對應(yīng)點與點N關(guān)于原點中心對稱是解答本題的關(guān)鍵.6、D【解析】

依據(jù),即可得到,再根據(jù),即可得到.【詳解】解:如圖,,,又,,故選:D.【點睛】本題主要考查了平行線的性質(zhì),兩直線平行,同位角相等.7、B【解析】

由圓周角定理即可解答.【詳解】∵△ABC是⊙O的內(nèi)接三角形,∴∠A=∠BOC,而∠BOC=120°,∴∠A=60°.故選B.【點睛】本題考查了圓周角定理,熟練運用圓周角定理是解決問題的關(guān)鍵.8、B【解析】

根據(jù)俯視圖是從上面看到的圖形可得俯視圖為正方形以及右下角一個三角形.【詳解】從上面看,是正方形右邊有一條斜線,如圖:故選B.【點睛】考查了三視圖的知識,根據(jù)俯視圖是從物體的上面看得到的視圖得出是解題關(guān)鍵.9、B【解析】

根據(jù)等量關(guān)系,即(經(jīng)過的路程﹣3)×1.6+起步價2元≤1.列出不等式求解.【詳解】可設(shè)此人從甲地到乙地經(jīng)過的路程為xkm,根據(jù)題意可知:(x﹣3)×1.6+2≤1,解得:x≤2.即此人從甲地到乙地經(jīng)過的路程最多為2km.故選B.【點睛】考查了一元一次方程的應(yīng)用.關(guān)鍵是掌握正確理解題意,找出題目中的數(shù)量關(guān)系.10、B【解析】

直接利用已知幾何體分別得出三視圖進而分析得出答案.【詳解】A、左、右兩個幾何體的主視圖為:,故此選項錯誤;B、左、右兩個幾何體的左視圖為:,故此選項正確;C、左、右兩個幾何體的俯視圖為:,故此選項錯誤;D、由以上可得,此選項錯誤;故選B.【點睛】此題主要考查了簡單幾何體的三視圖,正確把握觀察的角度是解題關(guān)鍵.11、D【解析】試題分析:2013年的產(chǎn)量=2011年的產(chǎn)量×(1+年平均增長率)2,把相關(guān)數(shù)值代入即可.解:2012年的產(chǎn)量為100(1+x),2013年的產(chǎn)量為100(1+x)(1+x)=100(1+x)2,即所列的方程為100(1+x)2=144,故選D.點評:考查列一元二次方程;得到2013年產(chǎn)量的等量關(guān)系是解決本題的關(guān)鍵.12、D【解析】

先找出全部兩張卡片正面數(shù)字之和情況的總數(shù),再先找出全部兩張卡片正面數(shù)字之和為正數(shù)情況的總數(shù),兩者的比值即為所求概率.【詳解】任取兩張卡片,數(shù)字之和一共有﹣3、2、1三種情況,其中和為正數(shù)的有2、1兩種情況,所以這兩張卡片正面數(shù)字之和為正數(shù)的概率是.故選D.【點睛】本題主要考查概率的求法,熟練掌握概率的求法是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、﹣1.【解析】試題分析:假設(shè)出扇形半徑,再表示出半圓面積,以及扇形面積,進而即可表示出兩部分P,Q面積相等.連接AB,OD,根據(jù)兩半圓的直徑相等可知∠AOD=∠BOD=45°,故可得出綠色部分的面積=S△AOD,利用陰影部分Q的面積為:S扇形AOB﹣S半圓﹣S綠色,故可得出結(jié)論.解:∵扇形OAB的圓心角為90°,扇形半徑為2,∴扇形面積為:=π(cm2),半圓面積為:×π×12=(cm2),∴SQ+SM=SM+SP=(cm2),∴SQ=SP,連接AB,OD,∵兩半圓的直徑相等,∴∠AOD=∠BOD=45°,∴S綠色=S△AOD=×2×1=1(cm2),∴陰影部分Q的面積為:S扇形AOB﹣S半圓﹣S綠色=π﹣﹣1=﹣1(cm2).故答案為﹣1.考點:扇形面積的計算.14、x≤1.【解析】

根據(jù)二次根式有意義的條件、分式有意義的條件列出不等式,解不等式即可.【詳解】依題意得:1﹣x≥0且x﹣3≠0,解得:x≤1.故答案是:x≤1.【點睛】本題主要考查了二次根式和分式有意義的條件,關(guān)鍵是掌握二次根式中的被開方數(shù)必須是非負數(shù),分式有意義的條件是分母不等于零.15、x≥﹣.【解析】

考點:二次根式有意義的條件.根據(jù)二次根式的意義,被開方數(shù)是非負數(shù)求解.解:根據(jù)題意得:1+2x≥0,解得x≥-.故答案為x≥-.16、m≥1.【解析】分析:先解第一個不等式,再根據(jù)不等式組的解集是x<1,從而得出關(guān)于m的不等式,解不等式即可.詳解:解第一個不等式得,x<1,∵不等式組的解集是x<1,∴m≥1,故答案為m≥1.點睛:本題是已知不等式組的解集,求不等式中字母取值范圍的問題.可以先將字母當作已知數(shù)處理,求出解集與已知解集比較,進而求得字母的范圍.求不等式的公共解,要遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小解不了.17、【解析】

如圖,作輔助線,首先證明△EFG≌△ECG,得到FG=CG(設(shè)為x),∠FEG=∠CEG;同理可證AF=AD=5,∠FEA=∠DEA,進而證明△AEG為直角三角形,運用相似三角形的性質(zhì)即可解決問題.【詳解】連接EG;∵四邊形ABCD為矩形,∴∠D=∠C=90°,DC=AB=4;由題意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG與Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(設(shè)為x),∠FEG=∠CEG;同理可證:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5?x,∴x=,∴CG=,故答案為:.【點睛】此題考查矩形的性質(zhì),翻折變換的性質(zhì),以考查全等三角形的性質(zhì)及其應(yīng)用、射影定理等幾何知識點為核心構(gòu)造而成;對綜合的分析問題解決問題的能力提出了一定的要求.18、60【解析】

根據(jù)題意和圖形可以分別表示出AD和CD的長,從而可以求得AD的長,本題得以解決.【詳解】∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米,∴BD=,CD=,∴+=100,解得,AD≈60考點:解直角三角形的應(yīng)用.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)作圖見解析;(2)1.【解析】試題分析:(1)根據(jù)百分比=計算即可解決問題,求出八年級、九年級、被抽到的志愿者人數(shù)畫出條形圖即可;(2)用樣本估計總體的思想,即可解決問題;試題解析:解:(1)由題意總?cè)藬?shù)=20÷40%=50人,八年級被抽到的志愿者:50×30%=15人九年級被抽到的志愿者:50×20%=10人,條形圖如圖所示:(2)該校共有志愿者600人,則該校九年級大約有600×20%=1人.答:該校九年級大約有1名志愿者.20、作圖見解析;CE=4.【解析】分析:利用數(shù)形結(jié)合的思想解決問題即可.詳解:如圖所示,矩形ABCD和△ABE即為所求;CE=4.點睛:本題考查作圖-應(yīng)用與設(shè)計、等腰三角形的性質(zhì)、勾股定理、矩形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會利用思想結(jié)合的思想解決問題.21、(1)乙種水果的車有2輛、丙種水果的汽車有6輛;(2)乙種水果的汽車是(m﹣12)輛,丙種水果的汽車是(32﹣2m)輛;(3)見解析.【解析】

(1)根據(jù)“8輛汽車裝運乙、丙兩種水果共22噸到A地銷售”列出方程組,即可解答;(2)設(shè)裝運乙、丙水果的車分別為a輛,b輛,列出方程組即可解答;(3)設(shè)總利潤為w千元,表示出w=10m+1.列出不等式組確定m的取值范圍13≤m≤15.5,結(jié)合一次函數(shù)的性質(zhì),即可解答.【詳解】解:(1)設(shè)裝運乙、丙水果的車分別為x輛,y輛,得:解得:答:裝運乙種水果的車有2輛、丙種水果的汽車有6輛.(2)設(shè)裝運乙、丙水果的車分別為a輛,b輛,得:,解得:答:裝運乙種水果的汽車是(m﹣12)輛,丙種水果的汽車是(32﹣2m)輛.(3)設(shè)總利潤為w千元,w=5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+1.∵∴13≤m≤15.5,∵m為正整數(shù),∴m=13,14,15,在w=10m+1中,w隨m的增大而增大,∴當m=15時,W最大=366(千元),答:當運甲水果的車15輛,運乙水果的車3輛,運丙水果的車2輛,利潤最大,最大利潤為366千元.【點睛】此題主要考查了一次函數(shù)的應(yīng)用,解決本題的關(guān)鍵是運用函數(shù)性質(zhì)求最值,需確定自變量的取值范圍.22、(2)見解析;(2)2+.【解析】

(2)連接OC,根據(jù)圓周角定理、切線的性質(zhì)得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對等邊證明;

(2)連接AE,過點B作BF⊥CE于點F,根據(jù)勾股定理計算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過點B作BF⊥CE于點F,∵E是AB中點,∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【點睛】本題考查的是切線的性質(zhì)、圓周角定理、勾股定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.23、(1)小張的發(fā)現(xiàn)正確;(2)詳見解析;(3)∠A=36°;(4)【解析】

嘗試探究:根據(jù)勾股定理計算即可;拓展延伸:(1)由AE2=AC?EC,推出,又AE=FC,推出,即可解問題;(2)利用相似三角形的性質(zhì)即可解決問題;(3)如圖,過點F作FM⊥AC交AC于點M,根據(jù)cos∠A=,求出AM、AF即可;應(yīng)用遷移:利用(3)中結(jié)論即可解決問題;【詳解】解:嘗試探究:﹣1;∵∠ACB=90°,BC=1,AC=2,∴AB=,∴AD=AE=,∵AE2=()2=6﹣2,AC?EC=2×[2﹣()]=6﹣,∴AE2=AC?EC,∴小張的發(fā)現(xiàn)正確;拓展延伸:(1)∵AE2=AC?EC,∴∵AE=FC,∴,又∵∠C=∠C,∴△ACF∽△FCE;(2)∵△ACF∽△FCE,∴∠AFC=∠CEF,又∵EF=FC,∴∠C=∠CEF,∴∠AFC=∠C,∴AC=AF,∵AE=EF,∴∠A=∠AFE,∴∠FEC=2∠A,∵EF=FC,∴∠C=2∠A,∵∠AFC=∠C=2∠A,∵∠AFC+∠C+∠A=180°,∴∠A=36°;(3)如圖,過點F作FM⊥AC交AC于點M,由嘗試探究可知AE=,EC=,∵EF=FC,由(2)得:AC=AF=2,∴ME=,∴AM=,∴cos∠A=;應(yīng)用遷移:∵正十邊形的中心角等于=36°,且是半徑為2的圓內(nèi)接正十邊形,∴如圖,當點A是圓內(nèi)接正十邊形的圓心,AC和AF都是圓的半徑,F(xiàn)C是正十邊形的邊長時,設(shè)AF=AC=2,F(xiàn)C=EF=AE=x,∵△ACF∽△FCE,∴,∴,∴,∴半徑為2的圓內(nèi)接正十邊形的邊長為.【點睛】本題考查相似三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,學會利用數(shù)形結(jié)合的思想思考問題,屬于中考壓軸題.24、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】

(1)直接利用線段AB的“等長點”的條件判斷;(2)分兩種情況討論,利用對稱性和垂直的性質(zhì)即可求出m,n;(3)先判斷出直線y=kx+3與圓A,B相切時,如圖2所示,利用相似三角形的性質(zhì)即可求出結(jié)論.【詳解】(1)∵A(0,3),B(,0),∴AB=2,∵點C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是線段AB的“等長點”,∵點C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是線段AB的“等長點”,∵點C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是線段AB的“等長點”;故答案為C1,C3;(2)如圖1,在Rt△AOB中,OA=3,OB=,∴AB=2,tan∠OAB==,∴∠OAB=30°,當點D在y軸左側(cè)時,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵點D(m,n)是線段AB的“等長點”,∴AD=AB,∴D(﹣,0),∴m=,n=0,當點D在y軸右側(cè)時,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵點D(m,n)是線段AB的“等長點”,∴AD=AB=2,∴m=2;∴D(,3)(3)如圖2,∵直線y=kx+3k=k(x+3),∴直線y=kx+3k恒過一點P(﹣3,0),∴在Rt△AOP中,OA=3,OP=3,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,當PF與⊙B相切時交y軸于F,∴PA切⊙B于A,∴點F就是直線y=kx+3k與⊙B的切點,∴F(0,﹣3),∴3k=﹣3,∴k=﹣,當直線y=kx+3k與⊙A相切時交y軸于G切點為E,∴∠AEG=∠OPG=90°,∴△AEG∽△POG,∴,∴=,解得:k=或k=(舍去)∵直線y=kx+3k上至少存在一個線段AB的“等長點”,∴﹣≤k≤,【點睛】此題是一次函數(shù)綜合題,主要考查了新定義,銳角三角函數(shù),直角三角形的性質(zhì),等腰三角形的性質(zhì),對稱性,解(1)的關(guān)鍵是理解新定義,解(2)的關(guān)鍵是畫出圖形,解(3)的關(guān)鍵是判斷出直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論