版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省鎮(zhèn)江市江南中學(xué)2024年中考沖刺卷數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.一元二次方程mx2+mx﹣=0有兩個(gè)相等實(shí)數(shù)根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.22.如圖,AB∥CD,點(diǎn)E在線段BC上,CD=CE,若∠ABC=30°,則∠D為()A.85° B.75° C.60° D.30°3.在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點(diǎn)橫坐標(biāo)差的最大值,“鉛垂高”h:任意兩點(diǎn)縱坐標(biāo)差的最大值,則“矩面積”S=ah.例如:三點(diǎn)坐標(biāo)分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點(diǎn)的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或64.關(guān)于x的不等式組的所有整數(shù)解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,25.《九章算術(shù)》是中國(guó)古代第一部數(shù)學(xué)專著,它對(duì)我國(guó)古代后世的數(shù)學(xué)家產(chǎn)生了深遠(yuǎn)的影響,該書中記載了一個(gè)問(wèn)題,大意是:有幾個(gè)人一起去買一件物品,每人出8元,多3元;每人出7元,少4元,問(wèn)有多少人?該物品價(jià)幾何?設(shè)有x人,物品價(jià)值y元,則所列方程組正確的是()A. B.C. D.6.一副直角三角板如圖放置,其中,,,點(diǎn)F在CB的延長(zhǎng)線上若,則等于()A.35° B.25° C.30° D.15°7.如圖,⊙O中,弦AB、CD相交于點(diǎn)P,若∠A=30°,∠APD=70°,則∠B等于()A.30° B.35° C.40° D.50°8.如圖,G,E分別是正方形ABCD的邊AB,BC上的點(diǎn),且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結(jié)論有()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)9.若正六邊形的半徑長(zhǎng)為4,則它的邊長(zhǎng)等于()A.4 B.2 C. D.10.如圖,已知在△ABC,AB=AC.若以點(diǎn)B為圓心,BC長(zhǎng)為半徑畫弧,交腰AC于點(diǎn)E,則下列結(jié)論一定正確的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE11.下列四個(gè)圖形中既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是()A. B. C. D.12.某校八(2)班6名女同學(xué)的體重(單位:kg)分別為35,36,38,40,42,42,則這組數(shù)據(jù)的中位數(shù)是()A.38 B.39 C.40 D.42二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在平面直角坐標(biāo)系中,正方形ABOC和正方形DOFE的頂點(diǎn)B,F(xiàn)在x軸上,頂點(diǎn)C,D在y軸上,且S△ADC=4,反比例函數(shù)y=(x>0)的圖像經(jīng)過(guò)點(diǎn)E,則k=_______。14.因式分解:a3-a=______.15.如圖,某數(shù)學(xué)興趣小組將邊長(zhǎng)為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細(xì)),則所得的扇形ABD的面積為_____.16.如圖,點(diǎn)P的坐標(biāo)為(2,2),點(diǎn)A,B分別在x軸,y軸的正半軸上運(yùn)動(dòng),且∠APB=90°.下列結(jié)論:①PA=PB;②當(dāng)OA=OB時(shí)四邊形OAPB是正方形;③四邊形OAPB的面積和周長(zhǎng)都是定值;④連接OP,AB,則AB>OP.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)17.如圖,中,,則__________.18.若正六邊形的邊長(zhǎng)為2,則此正六邊形的邊心距為______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)按要求化簡(jiǎn):(a﹣1)÷,并選擇你喜歡的整數(shù)a,b代入求值.小聰計(jì)算這一題的過(guò)程如下:解:原式=(a﹣1)÷…①=(a﹣1)?…②=…③當(dāng)a=1,b=1時(shí),原式=…④以上過(guò)程有兩處關(guān)鍵性錯(cuò)誤,第一次出錯(cuò)在第_____步(填序號(hào)),原因:_____;還有第_____步出錯(cuò)(填序號(hào)),原因:_____.請(qǐng)你寫出此題的正確解答過(guò)程.20.(6分)如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C、D兩點(diǎn).點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn).求此拋物線的解析式;求C、D兩點(diǎn)坐標(biāo)及△BCD的面積;若點(diǎn)P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點(diǎn)P的坐標(biāo).21.(6分)如圖,在等腰△ABC中,AB=BC,以AB為直徑的⊙O與AC相交于點(diǎn)D,過(guò)點(diǎn)D作DE⊥BC交AB延長(zhǎng)線于點(diǎn)E,垂足為點(diǎn)F.(1)證明:DE是⊙O的切線;(2)若BE=4,∠E=30°,求由、線段BE和線段DE所圍成圖形(陰影部分)的面積,(3)若⊙O的半徑r=5,sinA=,求線段EF的長(zhǎng).22.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點(diǎn),連接BE.(1)如圖1,若∠ABE=15°,O為BE中點(diǎn),連接AO,且AO=1,求BC的長(zhǎng);(2)如圖2,D為AB上一點(diǎn),且滿足AE=AD,過(guò)點(diǎn)A作AF⊥BE交BC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥CD交BE的延長(zhǎng)線于點(diǎn)G,交AC于點(diǎn)M,求證:BG=AF+FG.23.(8分)趙亮同學(xué)想利用影長(zhǎng)測(cè)量學(xué)校旗桿的高度,如圖,他在某一時(shí)刻立1米長(zhǎng)的標(biāo)桿測(cè)得其影長(zhǎng)為1.2米,同時(shí)旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測(cè)得其長(zhǎng)度為9.6米和2米,則學(xué)校旗桿的高度為________米.24.(10分)為做好防汛工作,防汛指揮部決定對(duì)某水庫(kù)的水壩進(jìn)行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來(lái)的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)25.(10分)如圖,已知拋物線y=ax2﹣2ax+b與x軸交于A、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=3OA,設(shè)拋物線的頂點(diǎn)為D.(1)求拋物線的解析式;(2)在拋物線對(duì)稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn)(其中點(diǎn)M在點(diǎn)N的右側(cè)),在x軸上是否存在點(diǎn)Q,使△MNQ為等腰直角三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.26.(12分)先化簡(jiǎn),再求值:,再?gòu)牡姆秶鷥?nèi)選取一個(gè)你最喜歡的值代入,求值.27.(12分)如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥DC,垂足為點(diǎn)E,連接BE,點(diǎn)F為BE上一點(diǎn),連接AF,∠AFE=∠D.(1)求證:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=.求證:AF=BF.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
由方程有兩個(gè)相等的實(shí)數(shù)根,得到根的判別式等于0,求出m的值,經(jīng)檢驗(yàn)即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個(gè)相等實(shí)數(shù)根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經(jīng)檢驗(yàn)m=0不合題意,則m=﹣1.故選C.【點(diǎn)睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個(gè)不相等的實(shí)數(shù)根;根的判別式的值等于0,方程有兩個(gè)相等的實(shí)數(shù)根;根的判別式的值小于0,方程沒(méi)有實(shí)數(shù)根.2、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根據(jù)三角形內(nèi)角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,從而求出∠D.詳解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故選B.點(diǎn)睛:此題考查的是平行線的性質(zhì)及三角形內(nèi)角和定理,解題的關(guān)鍵是先根據(jù)平行線的性質(zhì)求出∠C,再由CD=CE得出∠D=∠CED,由三角形內(nèi)角和定理求出∠D.3、C【解析】
由題可知“水平底”a的長(zhǎng)度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進(jìn)行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當(dāng)t>2時(shí),t-1=6,解得t=7;當(dāng)t<1時(shí),2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系的內(nèi)容,理解題意是解題關(guān)鍵.4、B【解析】
分別求出每一個(gè)不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無(wú)解了確定不等式組的解集,據(jù)此即可得出答案.【詳解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,則不等式組的解集為﹣2<x<2,所以不等式組的整數(shù)解為﹣1、0、1,故選:B.【點(diǎn)睛】考查的是解一元一次不等式組,正確求出每一個(gè)不等式解集是基礎(chǔ),熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關(guān)鍵.5、C【解析】根據(jù)題意相等關(guān)系:①8×人數(shù)-3=物品價(jià)值,②7×人數(shù)+4=物品價(jià)值,可列方程組:,故選C.點(diǎn)睛:本題考查了二元一次方程組的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系.6、D【解析】
直接利用三角板的特點(diǎn),結(jié)合平行線的性質(zhì)得出∠BDE=45°,進(jìn)而得出答案.【詳解】解:由題意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故選D.【點(diǎn)睛】此題主要考查了平行線的性質(zhì),根據(jù)平行線的性質(zhì)得出∠BDE的度數(shù)是解題關(guān)鍵.7、C【解析】分析:欲求∠B的度數(shù),需求出同弧所對(duì)的圓周角∠C的度數(shù);△APC中,已知了∠A及外角∠APD的度數(shù),即可由三角形的外角性質(zhì)求出∠C的度數(shù),由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故選C.8、C【解析】
由∠BEG=45°知∠BEA>45°,結(jié)合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯(cuò)誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識(shí)點(diǎn)的綜合運(yùn)用,綜合比較強(qiáng),難度較大.9、A【解析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長(zhǎng)是1.故選A.考點(diǎn):正多邊形和圓.10、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以點(diǎn)B為圓心,BC長(zhǎng)為半徑畫弧,交腰AC于點(diǎn)E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故選C.點(diǎn)睛:本題考查了等腰三角形的性質(zhì),當(dāng)?shù)妊切蔚牡捉菍?duì)應(yīng)相等時(shí)其頂角也相等,難度不大.11、D【解析】
根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;C、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;D、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故此選項(xiàng)正確.故選D.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.12、B【解析】
根據(jù)中位數(shù)的定義求解,把數(shù)據(jù)按大小排列,第3、4個(gè)數(shù)的平均數(shù)為中位數(shù).【詳解】解:由于共有6個(gè)數(shù)據(jù),
所以中位數(shù)為第3、4個(gè)數(shù)的平均數(shù),即中位數(shù)為=39,
故選:B.【點(diǎn)睛】本題主要考查了中位數(shù).要明確定義:將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,若這組數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則最中間的那個(gè)數(shù)叫做這組數(shù)據(jù)的中位數(shù);若這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則最中間兩個(gè)數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、8【解析】
設(shè)正方形ABOC和正方形DOFE的邊長(zhǎng)分別是m、n,則AB=OB=m,DE=EF=OF=n,BF=OB+OF=m+n,然后根據(jù)S△ADF=S梯形ABOD+S△DOF-S△ABF=4,得到關(guān)于n的方程,解方程求得n的值,最后根據(jù)系數(shù)k的幾何意義求得即可.【詳解】設(shè)正方形ABOC和正方形DOFE的邊長(zhǎng)分別是m、n,則AB=OB=m,DE=EF=OF=n,∴BF=OB+OF=m+n,,∴=8,∵點(diǎn)E(n.n)在反比例函數(shù)y=kx(x>0)的圖象上,∴k==8,故答案為8.【點(diǎn)睛】本題考查了正方形的性質(zhì)和反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.14、a(a-1)(a+1)【解析】分析:先提取公因式a,再對(duì)余下的多項(xiàng)式利用平方差公式繼續(xù)分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).15、25【解析】試題解析:由題意16、①②【解析】
過(guò)P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對(duì)①進(jìn)行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當(dāng)當(dāng)OA=OB時(shí),OA=OB=1,然后可對(duì)②作出判斷,由△APM≌△BPN可對(duì)四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據(jù)AP和PB的長(zhǎng)度變化情況可對(duì)四邊形OAPB的周長(zhǎng)作出判斷,求得AB的最大值以及OP的長(zhǎng)度可對(duì)④作出判斷.【詳解】過(guò)P作PM⊥y軸于M,PN⊥x軸于N
∵P(1,1),
∴PN=PM=1.
∵x軸⊥y軸,
∴∠MON=∠PNO=∠PMO=90°,
∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,
∴OM=ON=PN=PM=1,
∵∠MPA=∠APB=90°,
∴∠MPA=∠NPB.
∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,
∴△MPA≌△NPB,
∴PA=PB,故①正確.
∵△MPA≌△NPB,
∴AM=BN,
∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
當(dāng)OA=OB時(shí),OA=OB=1,則點(diǎn)A、B分別與點(diǎn)M、N重合,此時(shí)四邊形OAPB是正方形,故②正確.
∵△MPA≌△NPB,
∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.
∵OA+OB=2,PA=PB,且PA和PB的長(zhǎng)度會(huì)不斷的變化,故周長(zhǎng)不是定值,故③錯(cuò)誤.
,∵∠AOB+∠APB=180°,
∴點(diǎn)A、O、B、P共圓,且AB為直徑,所以
AB≥OP,故④錯(cuò)誤.
故答案為:①②.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,坐標(biāo)與圖形性質(zhì),正方形的性質(zhì)的應(yīng)用,關(guān)鍵是推出AM=BN和推出OA+OB=OM+ON17、17【解析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案為17.18、.【解析】
連接OA、OB,根據(jù)正六邊形的性質(zhì)求出∠AOB,得出等邊三角形OAB,求出OA、AM的長(zhǎng),根據(jù)勾股定理求出即可.【詳解】連接OA、OB、OC、OD、OE、OF,∵正六邊形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、①,運(yùn)算順序錯(cuò)誤;④,a等于1時(shí),原式無(wú)意義.【解析】
由于乘法和除法是同級(jí)運(yùn)算,應(yīng)當(dāng)按照從左向右的順序計(jì)算,①運(yùn)算順序錯(cuò)誤;④當(dāng)a=1時(shí),等于0,原式無(wú)意義.【詳解】①運(yùn)算順序錯(cuò)誤;故答案為①,運(yùn)算順序錯(cuò)誤;④當(dāng)a=1時(shí),等于0,原式無(wú)意義.故答案為a等于1時(shí),原式無(wú)意義.當(dāng)時(shí),原式【點(diǎn)睛】本題考查了分式的化簡(jiǎn)求值,注意運(yùn)算順序和分式有意義的條件.20、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】
(1)設(shè)拋物線頂點(diǎn)式解析式y(tǒng)=a(x-1)2+4,然后把點(diǎn)B的坐標(biāo)代入求出a的值,即可得解;
(2)令y=0,解方程得出點(diǎn)C,D坐標(biāo),再用三角形面積公式即可得出結(jié)論;
(3)先根據(jù)面積關(guān)系求出點(diǎn)P的坐標(biāo),求出點(diǎn)P的縱坐標(biāo),代入拋物線解析式即可求出點(diǎn)P的坐標(biāo).【詳解】解:(1)、∵拋物線的頂點(diǎn)為A(1,4),∴設(shè)拋物線的解析式y(tǒng)=a(x﹣1)2+4,把點(diǎn)B(0,3)代入得,a+4=3,解得a=﹣1,∴拋物線的解析式為y=﹣(x﹣1)2+4;(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4;令y=0,則0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,∵S△PCD=S△BCD,∴S△PCD=CD×|yP|=×4×|yP|=3,∴|yP|=,∵點(diǎn)P在x軸上方的拋物線上,∴yP>0,∴yP=,∵拋物線的解析式為y=﹣(x﹣1)2+4;∴=﹣(x﹣1)2+4,∴x=1±,∴P(1+,),或P(1﹣,).【點(diǎn)睛】本題考查的是二次函數(shù)的綜合應(yīng)用,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.21、(1)見解析(2)8(3)【解析】分析:(1)連接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根據(jù)AO=OB知OD是△ABC的中位線,據(jù)此知OD∥BC,結(jié)合DE⊥BC即可得證;(2)設(shè)⊙O的半徑為x,則OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根據(jù)S陰影=S△ODE-S扇形ODB計(jì)算可得答案.(3)先證Rt△DFB∽R(shí)t△DCB得,據(jù)此求得BF的長(zhǎng),再證△EFB∽△EDO得,據(jù)此求得EB的長(zhǎng),繼而由勾股定理可得答案.詳解:(1)如圖,連接BD、OD,∵AB是⊙O的直徑,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切線;(2)設(shè)⊙O的半徑為x,則OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴,解得:x=4,∴DE=4,S△ODE=×4×4=8,S扇形ODB=,則S陰影=S△ODE-S扇形ODB=8-;(3)在Rt△ABD中,BD=ABsinA=10×=2,∵DE⊥BC,∴Rt△DFB∽R(shí)t△DCB,∴,即,∴BF=2,∵OD∥BC,∴△EFB∽△EDO,∴,即,∴EB=,∴EF=.點(diǎn)睛:本題主要考查圓的綜合問(wèn)題,解題的關(guān)鍵是掌握?qǐng)A的有關(guān)性質(zhì)、中位線定理、三角函數(shù)的應(yīng)用及相似三角形的判定與性質(zhì)等知識(shí)點(diǎn).22、(1)3+【解析】
(1)如圖1中,在AB上取一點(diǎn)M,使得BM=ME,連接ME.,設(shè)AE=x,則ME=BM=2x,AM=3x,根據(jù)AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問(wèn)題.
(2)如圖2中,作CQ⊥AC,交AF的延長(zhǎng)線于Q,首先證明EG=MG,再證明FM=FQ即可解決問(wèn)題.【詳解】解:如圖1中,在AB上取一點(diǎn)M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵M(jìn)B=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設(shè)AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長(zhǎng)線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,F(xiàn)G⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì)、直角三角形斜邊中線定理,等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題.23、10【解析】試題分析:根據(jù)相似的性質(zhì)可得:1:1.2=x:9.6,則x=8,則旗桿的高度為8+2=10米.考點(diǎn):相似的應(yīng)用24、水壩原來(lái)的高度為12米【解析】試題分析:設(shè)BC=x米,用x表示出AB的長(zhǎng),利用坡度的定義得到BD=BE,進(jìn)而列出x的方程,求出x的值即可.試題解析:設(shè)BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水壩原來(lái)的高度為12米..考點(diǎn):解直角三角形的應(yīng)用,坡度.25、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).【解析】
(1)根據(jù)拋物線的解析式,可得到它的對(duì)稱軸方程,進(jìn)而可根據(jù)點(diǎn)B的坐標(biāo)來(lái)確定點(diǎn)A的坐標(biāo),已知OC=1OA,即可得到點(diǎn)C的坐標(biāo),利用待定系數(shù)法即可求得該拋物線的解析式.(2)求出點(diǎn)C關(guān)于對(duì)稱軸的對(duì)稱點(diǎn),求出兩點(diǎn)間的距離與CD相比較可知,PC不可能與CD相等,因此要分兩種情況討論:①CD=PD,根據(jù)拋物線的對(duì)稱性可知,C點(diǎn)關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)滿足P點(diǎn)的要求,坐標(biāo)易求得;②PD=PC,可設(shè)出點(diǎn)P的坐標(biāo),然后表示出PC、PD的長(zhǎng),根據(jù)它們的等量關(guān)系列式求出點(diǎn)P的坐標(biāo).(1)此題要分三種情況討論:①點(diǎn)Q是直角頂點(diǎn),那么點(diǎn)Q必為拋物線對(duì)稱軸與x軸的交點(diǎn),由此求得點(diǎn)Q的坐標(biāo);②M、N在x軸上方,且以N為直角頂點(diǎn)時(shí),可設(shè)出點(diǎn)N的坐標(biāo),根據(jù)拋物線的對(duì)稱性可知MN正好等于拋物線對(duì)稱軸到N點(diǎn)距離的2倍,而△MNQ是等腰直角三角形,則QN=MN,由此可表示出點(diǎn)N的縱坐標(biāo),聯(lián)立拋物線的解析式,即可得到關(guān)于N點(diǎn)橫坐標(biāo)的方程,從而求得點(diǎn)Q的坐標(biāo);根據(jù)拋物線的對(duì)稱性知:Q關(guān)于拋物線的對(duì)稱點(diǎn)也符合題意;③M、N在x軸下方,且以N為直角頂點(diǎn)時(shí),方法同②.【詳解】解:(1)由y=ax2﹣2ax+b可得拋物線對(duì)稱軸為x=1,由B(1,0)可得A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南省昆明市九縣區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期英語(yǔ)期末試卷
- 文化行業(yè)安全生產(chǎn)培訓(xùn)方案
- 2023年吉林省遼源市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2023年浙江省衢州市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2022年山東省青島市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年遼寧省營(yíng)口市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 畢業(yè)學(xué)員發(fā)言稿
- 《MTP管理教材》課件
- 《行業(yè)高增長(zhǎng)確定》課件
- 暑假計(jì)算題綜合自檢卷練習(xí)題數(shù)學(xué)三年級(jí)下冊(cè)
- 療愈行業(yè)現(xiàn)狀分析
- 北京海淀區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期期末數(shù)學(xué)數(shù)學(xué)試卷
- 2023年安全總監(jiān)年終工作總結(jié)
- 浙江省杭州拱墅區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期期末語(yǔ)文試題
- 以消費(fèi)者為中心:提升營(yíng)銷效果的技巧
- 部編版四年級(jí)道德與法治上冊(cè)期末復(fù)習(xí)計(jì)劃
- 獸用疫苗管理制度
- 2023瑞幸員工合同協(xié)議書
- 大氣數(shù)據(jù)測(cè)試儀校準(zhǔn)規(guī)范
- 硬筆書法田字格標(biāo)準(zhǔn)尺寸
- 升降柱 施工方案
評(píng)論
0/150
提交評(píng)論