版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年甘肅省天水市五中高考沖刺模擬數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是虛數(shù)單位,則()A. B. C. D.2.關(guān)于函數(shù),下列說法正確的是()A.函數(shù)的定義域為B.函數(shù)一個遞增區(qū)間為C.函數(shù)的圖像關(guān)于直線對稱D.將函數(shù)圖像向左平移個單位可得函數(shù)的圖像3.如圖所示是某年第一季度五省GDP情況圖,則下列說法中不正確的是()A.該年第一季度GDP增速由高到低排位第3的是山東省B.與去年同期相比,該年第一季度的GDP總量實現(xiàn)了增長C.該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個D.去年同期浙江省的GDP總量超過了4500億元4.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點所在區(qū)間為()A. B. C. D.5.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.以,為直徑的圓的方程是A. B.C. D.7.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內(nèi),點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心8.已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是()A. B. C. D.9.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.10.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.11.下圖是我國第24~30屆奧運獎牌數(shù)的回眸和中國代表團獎牌總數(shù)統(tǒng)計圖,根據(jù)表和統(tǒng)計圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團的奧運獎牌總數(shù)一直保持上升趨勢B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實際意義C.第30屆與第29屆北京奧運會相比,奧運金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數(shù)的中位數(shù)是54.512.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的離心率是,若以為圓心且與橢圓有公共點的圓的最大半徑為,此時橢圓的方程是____.14.的展開式中所有項的系數(shù)和為______,常數(shù)項為______.15.三個小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),則三人都收到禮物的概率為______.16.若實數(shù),滿足不等式組,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標(biāo)方程為.(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.18.(12分)在平面直角坐標(biāo)系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當(dāng)線段AB的長度最小時,求s的值.19.(12分)已知等差數(shù)列{an}的各項均為正數(shù),Sn為等差數(shù)列{an}的前n項和,.(1)求數(shù)列{an}的通項an;(2)設(shè)bn=an?3n,求數(shù)列{bn}的前n項和Tn.20.(12分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.21.(12分)某校為了解校園安全教育系列活動的成效,對全校學(xué)生進行一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應(yīng)等級進行量化:“合格”記分,“不合格”記分.現(xiàn)隨機抽取部分學(xué)生的成績,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下所示:等級不合格合格得分頻數(shù)624(Ⅰ)若測試的同學(xué)中,分?jǐn)?shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認(rèn)為性別與安全意識有關(guān)?是否合格性別不合格合格總計男生女生總計(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中,共選取人進行座談,現(xiàn)再從這人中任選人,記所選人的量化總分為,求的分布列及數(shù)學(xué)期望;(Ⅲ)某評估機構(gòu)以指標(biāo)(,其中表示的方差)來評估該校安全教育活動的成效,若,則認(rèn)定教育活動是有效的;否則認(rèn)定教育活動無效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?附表及公式:,其中.22.(10分)已知數(shù)列是等差數(shù)列,前項和為,且,.(1)求.(2)設(shè),求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)復(fù)數(shù)的乘法運算法則,直接計算,即可得出結(jié)果.【詳解】.故選B【點睛】本題主要考查復(fù)數(shù)的乘法,熟記運算法則即可,屬于基礎(chǔ)題型.2、B【解析】
化簡到,根據(jù)定義域排除,計算單調(diào)性知正確,得到答案.【詳解】,故函數(shù)的定義域為,故錯誤;當(dāng)時,,函數(shù)單調(diào)遞增,故正確;當(dāng),關(guān)于的對稱的直線為不在定義域內(nèi),故錯誤.平移得到的函數(shù)定義域為,故不可能為,錯誤.故選:.【點睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,定義域,對稱,三角函數(shù)平移,意在考查學(xué)生的綜合應(yīng)用能力.3、D【解析】
根據(jù)折線圖、柱形圖的性質(zhì),對選項逐一判斷即可.【詳解】由折線圖可知A、B項均正確,該年第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個.故C項正確;.故D項不正確.故選:D.【點睛】本題考查折線圖、柱形圖的識別,考查學(xué)生的閱讀能力、數(shù)據(jù)處理能力,屬于中檔題.4、B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調(diào)遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點存在性定理可知,函數(shù)g(x)的零點所在的區(qū)間是(0,1),故選B.5、D【解析】
設(shè),整理得到方程組,解方程組即可解決問題.【詳解】設(shè),因為,所以,所以,解得:,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為,此點位于第四象限.故選D【點睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點知識,考查了方程思想,屬于基礎(chǔ)題.6、A【解析】
設(shè)圓的標(biāo)準(zhǔn)方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,由題意得圓心為,的中點,根據(jù)中點坐標(biāo)公式可得,,又,所以圓的標(biāo)準(zhǔn)方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標(biāo)準(zhǔn)方程,建立方程組,屬于基礎(chǔ)題.7、A【解析】
根據(jù)題意P到兩個平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學(xué)生的計算能力和空間想象能力.8、D【解析】
易知單調(diào)遞增,由可得唯一零點,通過已知可求得,則問題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點為,所以,∴,問題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,∴.故選D.【點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.9、D【解析】由題意得,函數(shù)點定義域為且,所以定義域關(guān)于原點對稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,故選D.10、C【解析】
首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達(dá)式,在中,可以計算出的一個表達(dá)式,根據(jù)長度關(guān)系可構(gòu)造等式求得半徑,進而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關(guān)問題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.11、B【解析】
根據(jù)表格和折線統(tǒng)計圖逐一判斷即可.【詳解】A.中國代表團的奧運獎牌總數(shù)不是一直保持上升趨勢,29屆最多,錯誤;B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運會相比,奧運金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯誤;D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【點睛】此題考查統(tǒng)計圖,關(guān)鍵點讀懂折線圖,屬于簡單題目.12、B【解析】
先求出,得到,再結(jié)合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意設(shè)為橢圓上任意一點,表達(dá)出,再根據(jù)二次函數(shù)的對稱軸與求解的關(guān)系分析最值求解即可.【詳解】因為橢圓的離心率是,,所以,故橢圓方程為.因為以為圓心且與橢圓有公共點的圓的最大半徑為,所以橢圓上的點到點的距離的最大值為.設(shè)為橢圓上任意一點,則.所以因為的對稱軸為.(i)當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.此時,解得.(ii)當(dāng)時,在上單調(diào)遞減.此時,解得舍去.綜上,橢圓方程為.故答案為:【點睛】本題主要考查了橢圓上的點到定點的距離最值問題,需要根據(jù)題意設(shè)橢圓上的點,再求出距離,根據(jù)二次函數(shù)的對稱軸與區(qū)間的關(guān)系分析最值的取值點分類討論求解.屬于中檔題.14、3-260【解析】
(1)令求得所有項的系數(shù)和;(2)先求出展開式中的常數(shù)項與含的系數(shù),再求展開式中的常數(shù)項.【詳解】將代入,得所有項的系數(shù)和為3.因為的展開式中含的項為,的展開式中含常數(shù)項,所以的展開式中的常數(shù)項為.故答案為:3;-260【點睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎(chǔ)題.15、【解析】
基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù).由此能求出三人都收到禮物的概率.【詳解】三個小朋友之間準(zhǔn)備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù).則三人都收到禮物的概率.故答案為:.【點睛】本題考查古典概型概率的求法,考查運算求解能力,屬于基礎(chǔ)題.16、5【解析】
根據(jù)題意,畫出圖像,數(shù)形結(jié)合,將目標(biāo)轉(zhuǎn)化為求動直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區(qū)域如圖陰影區(qū)域所示,令,則.分析知,當(dāng),時,取得最小值,且.【點睛】本題考查線性規(guī)劃問題,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)曲線表示的是焦點為,準(zhǔn)線為的拋物線;(2)8.【解析】試題分析:(1)將曲線的極坐標(biāo)方程為兩邊同時乘以,利用極坐標(biāo)與直角坐標(biāo)之間的關(guān)系即可得出其直角坐標(biāo)方程;(2)由直線經(jīng)過點,可得的值,再將直線的參數(shù)方程代入曲線的標(biāo)準(zhǔn)方程,由直線參數(shù)方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即,∴曲線表示的是焦點為,準(zhǔn)線為的拋物線.(2)將代入,得,∴,∵,∴,∴直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入得,由直線參數(shù)方程的幾何意義可知,.18、(1),(2).【解析】
根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點Q處的切線的斜率存在,由對稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因為拋物線C的方程為,所以F的坐標(biāo)為,設(shè),因為圓M與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點,則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設(shè),,,由知,點Q處的切線的斜率存在,由對稱性不妨設(shè),由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時,取得極小值也是最小值,即AB取得最小值此時.【點睛】本題考查了直線和拋物線的位置關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)最值的關(guān)系,考查了運算能力和轉(zhuǎn)化能力,屬于難題.19、(1).(2)【解析】
(1)先設(shè)等差數(shù)列{an}的公差為d(d>0),然后根據(jù)等差數(shù)列的通項公式及已知條件可列出關(guān)于d的方程,解出d的值,即可得到數(shù)列{an}的通項an;(2)先根據(jù)第(1)題的結(jié)果計算出數(shù)列{bn}的通項公式,然后運用錯位相減法計算前n項和Tn.【詳解】(1)由題意,設(shè)等差數(shù)列{an}的公差為d(d>0),則a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an?3n?3n=(2n+1)?3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)?3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)?3n﹣1+(2n+1)?3n,兩式相減,可得:﹣2Tn=3×1+2×31+2×32+…+2?3n﹣1﹣(2n+1)?3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)?3n=3+2(2n+1)?3n=﹣2n?3n,∴Tn=n?3n.【點睛】本題主要考查等差數(shù)列基本量的計算,以及運用錯位相減法計算前n項和.考查了轉(zhuǎn)化與化歸思想,方程思想,錯位相減法的運用,以及邏輯思維能力和數(shù)學(xué)運算能力.屬于中檔題.20、(1)證明見解析;(2)【解析】
(1)要證明平面平面BDE,只需在平面內(nèi)找一條直線垂直平面BDE即可;(2)以O(shè)為坐標(biāo)原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標(biāo)系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,設(shè)AC,BD交于O,取BE的中點G,連FG,OG,,,四邊形OCFG是平行四邊形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O(shè)為坐標(biāo)原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標(biāo)系∵BE與平面ABCD所成的角為,,,,,,.,設(shè)平面BEF的法向量為,,,設(shè)平面的法向量設(shè)二面角的大小為..【點睛】本題考查線面垂直證面面垂直、面面所成角的計算,考查學(xué)生的計算能力,解決此類問題最關(guān)鍵是準(zhǔn)確寫出點的坐標(biāo),是一道中檔題.21、(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)不需要調(diào)整安全教育方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國美術(shù)學(xué)院《工業(yè)產(chǎn)品形態(tài)與設(shè)計元素》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)關(guān)于緊急信息報送制度
- 浙江安防職業(yè)技術(shù)學(xué)院《三維網(wǎng)絡(luò)游戲綜合實踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 全球價值鏈重構(gòu)與中國產(chǎn)業(yè)升級策略
- 數(shù)學(xué)知識解析
- 專業(yè)案例(暖通空調(diào)專業(yè))-注冊共用設(shè)備工程師(暖通空調(diào))《專業(yè)案例》真題匯編3
- 房地產(chǎn)經(jīng)紀(jì)綜合能力-《房地產(chǎn)經(jīng)紀(jì)綜合能力》押題密卷1
- 年終項目報告
- 畢業(yè)晚會串詞
- 春節(jié)發(fā)個閨蜜的祝福語短信
- 化工廠拆除施工方案
- 新能源汽車課件
- 人教版2024-2025學(xué)年七年級數(shù)學(xué)上冊3.2代數(shù)式(壓軸題綜合測試卷)專題特訓(xùn)(學(xué)生版+解析)
- 17個崗位安全操作規(guī)程手冊
- 骨科特殊檢查-肩部特殊檢查(康復(fù)評定技術(shù))
- 醫(yī)療器械設(shè)備采購項目實施方案
- 人教版數(shù)學(xué)七年級上冊3.3解一元一次方程去括號教學(xué)設(shè)計
- MATLAB與電力系統(tǒng)仿真
- 2025年山東省濟南市第一中學(xué)高三下學(xué)期期末統(tǒng)一考試物理試題含解析
- 2024-2030年中國干燥設(shè)備行業(yè)研發(fā)創(chuàng)新狀況及發(fā)展行情監(jiān)測研究報告
- 科技創(chuàng)新引領(lǐng)產(chǎn)業(yè)創(chuàng)新專題研究報告
評論
0/150
提交評論