2023-2024學(xué)年四川省成都市高高考沖刺數(shù)學(xué)模擬試題含解析_第1頁
2023-2024學(xué)年四川省成都市高高考沖刺數(shù)學(xué)模擬試題含解析_第2頁
2023-2024學(xué)年四川省成都市高高考沖刺數(shù)學(xué)模擬試題含解析_第3頁
2023-2024學(xué)年四川省成都市高高考沖刺數(shù)學(xué)模擬試題含解析_第4頁
2023-2024學(xué)年四川省成都市高高考沖刺數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年四川省成都市高高考沖刺數(shù)學(xué)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則()A. B. C. D.2.設(shè)雙曲線的左右焦點(diǎn)分別為,點(diǎn).已知?jiǎng)狱c(diǎn)在雙曲線的右支上,且點(diǎn)不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.3.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)4.已知,且,則的值為()A. B. C. D.5.已知平行于軸的直線分別交曲線于兩點(diǎn),則的最小值為()A. B. C. D.6.已知,則()A.5 B. C.13 D.7.已知函數(shù),集合,,則()A. B.C. D.8.設(shè),則復(fù)數(shù)的模等于()A. B. C. D.9.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.10.雙曲線的漸近線方程為()A. B.C. D.11.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]12.已知滿足,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.14.某市公租房源位于、、三個(gè)小區(qū),每位申請(qǐng)人只能申請(qǐng)其中一個(gè)小區(qū)的房子,申請(qǐng)其中任意一個(gè)小區(qū)的房子是等可能的,則該市的任意位申請(qǐng)人中,恰好有人申請(qǐng)小區(qū)房源的概率是______.(用數(shù)字作答)15.甲、乙、丙、丁四名同學(xué)報(bào)名參加淮南文明城市創(chuàng)建志愿服務(wù)活動(dòng),服務(wù)活動(dòng)共有“走進(jìn)社區(qū)”、“環(huán)境監(jiān)測(cè)”、“愛心義演”、“交通宣傳”等四個(gè)項(xiàng)目,每人限報(bào)其中一項(xiàng),記事件為“4名同學(xué)所報(bào)項(xiàng)目各不相同”,事件為“只有甲同學(xué)一人報(bào)走進(jìn)社區(qū)項(xiàng)目”,則的值為______.16.若,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知傾斜角為的直線經(jīng)過拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.(1)求拋物線的方程;(2)設(shè)為拋物線上任意一點(diǎn)(異于頂點(diǎn)),過做傾斜角互補(bǔ)的兩條直線、,交拋物線于另兩點(diǎn)、,記拋物線在點(diǎn)的切線的傾斜角為,直線的傾斜角為,求證:與互補(bǔ).18.(12分)如圖,三棱柱中,平面,,,分別為,的中點(diǎn).(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.19.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個(gè)半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計(jì)劃建造一條自小鎮(zhèn)經(jīng)小島至對(duì)岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護(hù)小島,段設(shè)計(jì)成與圓相切.設(shè).(1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費(fèi)用是每公里100萬元,則建造此通道最少需要多少萬元?20.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程是(為參數(shù),常數(shù)),曲線的極坐標(biāo)方程是.(1)寫出的普通方程及的直角坐標(biāo)方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點(diǎn),求直線的極坐標(biāo)方程.21.(12分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點(diǎn)Q為AE的中點(diǎn).(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.22.(10分)已知橢圓的離心率為,且過點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過點(diǎn)P作軸于Q,線段PQ的中點(diǎn)為M.直線AM與直線交于點(diǎn)N,D為線段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以O(shè)D為直徑的圓與點(diǎn)M的位置關(guān)系.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,即當(dāng)?shù)讛?shù)大于1時(shí)單調(diào)遞增,當(dāng)?shù)讛?shù)大于零小于1時(shí)單調(diào)遞減,對(duì)選項(xiàng)逐一驗(yàn)證即可得到正確答案.【詳解】因?yàn)?,所以,所以是減函數(shù),又因?yàn)?,所以,,所以,,所以A,B兩項(xiàng)均錯(cuò);又,所以,所以C錯(cuò);對(duì)于D,,所以,故選D.【點(diǎn)睛】這個(gè)題目考查的是應(yīng)用不等式的性質(zhì)和指對(duì)函數(shù)的單調(diào)性比較大小,兩個(gè)式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時(shí)可以代入一些特殊的數(shù)據(jù)得到具體值,進(jìn)而得到大小關(guān)系.2、A【解析】

依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于中檔題.3、A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問題,通常先在原點(diǎn)一側(cè)的區(qū)間(對(duì)奇(偶)函數(shù)而言)或某一周期內(nèi)(對(duì)周期函數(shù)而言)考慮,然后推廣到整個(gè)定義域上.4、A【解析】

由及得到、,進(jìn)一步得到,再利用兩角差的正切公式計(jì)算即可.【詳解】因?yàn)?,所以,又,所以,,所?故選:A.【點(diǎn)睛】本題考查三角函數(shù)誘導(dǎo)公式、二倍角公式以及兩角差的正切公式的應(yīng)用,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.5、A【解析】

設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.6、C【解析】

先化簡復(fù)數(shù),再求,最后求即可.【詳解】解:,,故選:C【點(diǎn)睛】考查復(fù)數(shù)的運(yùn)算,是基礎(chǔ)題.7、C【解析】

分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點(diǎn)睛】本題主要考查了集合的基本運(yùn)算,難度容易.8、C【解析】

利用復(fù)數(shù)的除法運(yùn)算法則進(jìn)行化簡,再由復(fù)數(shù)模的定義求解即可.【詳解】因?yàn)?所以,由復(fù)數(shù)模的定義知,.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算法則和復(fù)數(shù)的模;考查運(yùn)算求解能力;屬于基礎(chǔ)題.9、D【解析】

利用復(fù)數(shù)的除法運(yùn)算,化簡復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法運(yùn)算,其中解答中熟記復(fù)數(shù)的除法運(yùn)算法則是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.10、A【解析】

將雙曲線方程化為標(biāo)準(zhǔn)方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡單性質(zhì)的應(yīng)用.11、D【解析】

由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點(diǎn)睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.12、C【解析】

設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:由圖可知當(dāng)過點(diǎn)的直線平行于軸時(shí),此時(shí)成立;取所有負(fù)值都成立;當(dāng)過點(diǎn)時(shí),取正值中的最小值,,此時(shí);故的取值范圍為;故選:C.【點(diǎn)睛】本題考查簡單線性規(guī)劃的非線性目標(biāo)函數(shù)函數(shù)問題,解題時(shí)作出可行域,利用目標(biāo)函數(shù)的幾何意義求解是解題關(guān)鍵.對(duì)于直線斜率要注意斜率不存在的直線是否存在.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】

雙曲線的焦點(diǎn)在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因?yàn)殡p曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點(diǎn)睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點(diǎn)位置,寫出雙曲線的漸近線方程的對(duì)應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).14、【解析】

基本事件總數(shù),恰好有2人申請(qǐng)小區(qū)房源包含的基本事件個(gè)數(shù),由此能求出該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源的概率.【詳解】解:某市公租房源位于、、三個(gè)小區(qū),每位申請(qǐng)人只能申請(qǐng)其中一個(gè)小區(qū)的房子,申請(qǐng)其中任意一個(gè)小區(qū)的房子是等可能的,該市的任意5位申請(qǐng)人中,基本事件總數(shù),該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源包含的基本事件個(gè)數(shù):,該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源的概率是.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.15、【解析】

根據(jù)條件概率的求法,分別求得,再代入條件概率公式求解.【詳解】根據(jù)題意得所以故答案為:【點(diǎn)睛】本題主要考查條件概率的求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.16、【解析】

由已知利用兩角差的正弦函數(shù)公式可得,兩邊平方,由同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式即可計(jì)算得解.【詳解】,得,在等式兩邊平方得,解得.故答案為:.【點(diǎn)睛】本題主要考查了兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)根據(jù)題意,設(shè)直線方程為,聯(lián)立方程,根據(jù)拋物線的定義即可得到結(jié)論;(2)根據(jù)題意,設(shè)的方程為,聯(lián)立方程得,同理可得,進(jìn)而得到,再利用點(diǎn)差法得直線的斜率,利用切線與導(dǎo)數(shù)的關(guān)系得直線的斜率,進(jìn)而可得與互補(bǔ).【詳解】(1)由題意設(shè)直線的方程為,令、,聯(lián)立,得,根據(jù)拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設(shè),,設(shè)的方程為,與聯(lián)立消去得,,同理,直線的斜率=切線的斜率,由,即與互補(bǔ).【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系的綜合應(yīng)用,直線斜率的應(yīng)用,考查分析問題解決問題的能力,屬于中檔題.18、(1)詳見解析;(2).【解析】

(1)連接,,則且為的中點(diǎn),又∵為的中點(diǎn),∴,又平面,平面,故平面.(2)由平面,得,.以為原點(diǎn),分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,設(shè),則,,,,,.取平面的一個(gè)法向量為,由,得:,令,得同理可得平面的一個(gè)法向量為∵平面平面,∴解得,得,又,設(shè)直線與平面所成角為,則.所以,直線與平面所成角的正弦值是.19、(1),定義域是.(2)百萬【解析】

(1)以為原點(diǎn),直線為軸建立如圖所示的直角坐標(biāo)系,設(shè),利用直線與圓相切得到,再代入這一關(guān)系中,即可得答案;(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即可得答案;【詳解】以為原點(diǎn),直線為軸建立如圖所示的直角坐標(biāo)系.設(shè),則,,.因?yàn)?,所以直線的方程為,即,因?yàn)閳A與相切,所以,即,從而得,在直線的方程中,令,得,所以,所以當(dāng)時(shí),,設(shè)銳角滿足,則,所以關(guān)于的函數(shù)是,定義域是.(2)要使建造此通道費(fèi)用最少,只要通道的長度即最?。?,得,設(shè)銳角,滿足,得.列表:0減極小值增所以時(shí),,所以建造此通道的最少費(fèi)用至少為百萬元.【點(diǎn)睛】本題考查三角函數(shù)模型的實(shí)際應(yīng)用、利用導(dǎo)數(shù)求函數(shù)的最小值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.20、(1),,表示以為圓心為半徑的圓;為拋物線;(2)【解析】

(1)消去參數(shù)的直角坐標(biāo)方程,利用,即得的直角坐標(biāo)方程;(2)由直線與拋物線相切,求導(dǎo)可得切線斜率,再由直線與圓相切,故切線與圓心與切點(diǎn)連線垂直,可求解得到切點(diǎn)坐標(biāo),即得解.【詳解】(1)消去參數(shù)的直角坐標(biāo)方程為:.的極坐標(biāo)方程.∵,.當(dāng)時(shí)表示以為圓心為半徑的圓;為拋物線.(2)設(shè)切點(diǎn)為,由于,則切線斜率為,由于直線與圓相切,故切線與圓心與切點(diǎn)連線垂直,故有,直線的直角坐標(biāo)方程為,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論