![遼寧省四校聯(lián)考2023-2024學(xué)年高考壓軸卷數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view14/M06/17/0C/wKhkGWZEG6GAGccAAAJpu6XTfUc936.jpg)
![遼寧省四校聯(lián)考2023-2024學(xué)年高考壓軸卷數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view14/M06/17/0C/wKhkGWZEG6GAGccAAAJpu6XTfUc9362.jpg)
![遼寧省四校聯(lián)考2023-2024學(xué)年高考壓軸卷數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view14/M06/17/0C/wKhkGWZEG6GAGccAAAJpu6XTfUc9363.jpg)
![遼寧省四校聯(lián)考2023-2024學(xué)年高考壓軸卷數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view14/M06/17/0C/wKhkGWZEG6GAGccAAAJpu6XTfUc9364.jpg)
![遼寧省四校聯(lián)考2023-2024學(xué)年高考壓軸卷數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view14/M06/17/0C/wKhkGWZEG6GAGccAAAJpu6XTfUc9365.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省四校聯(lián)考2023-2024學(xué)年高考壓軸卷數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為實現(xiàn)國民經(jīng)濟新“三步走”的發(fā)展戰(zhàn)略目標,國家加大了扶貧攻堅的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開始,全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數(shù)占比(參加該項目戶數(shù)占2019年貧困戶總數(shù)的比)及該項目的脫貧率見下表:實施項目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務(wù)業(yè)參加用戶比脫貧率那么年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍2.已知向量,,則向量與的夾角為()A. B. C. D.3.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i4.已知復(fù)數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.35.已知角的終邊與單位圓交于點,則等于()A. B. C. D.6.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.7.某個小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1408.定義在上函數(shù)滿足,且對任意的不相等的實數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B. C. D.9.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.404010.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.11.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.12.已知函數(shù),若,,,則a,b,c的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直角坐標系中起點為坐標原點的向量滿足,且,,,存在,對于任意的實數(shù),不等式,則實數(shù)的取值范圍是______.14.設(shè)函數(shù),若在上的最大值為,則________.15.若正三棱柱的所有棱長均為2,點為側(cè)棱上任意一點,則四棱錐的體積為__________.16.若方程有兩個不等實根,則實數(shù)的取值范圍是_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(Ⅰ)當(dāng)時,解不等式;(Ⅱ)若的最小值為1,求的最小值.18.(12分)已知.(1)若曲線在點處的切線也與曲線相切,求實數(shù)的值;(2)試討論函數(shù)零點的個數(shù).19.(12分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)經(jīng)過點且斜率存在的直線交橢圓于兩點,點與點關(guān)于坐標原點對稱.連接.求證:存在實數(shù),使得成立.20.(12分)某工廠生產(chǎn)一種產(chǎn)品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:(1)估計該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機抽取2件,假設(shè)其中至少有1件是標準長度產(chǎn)品的概率不小于0.8時,該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時,生產(chǎn)一件產(chǎn)品為標準長度的概率的最小值.21.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點個數(shù).22.(10分)一張邊長為的正方形薄鋁板(圖甲),點,分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開,再將沿折疊,沿折疊,使,重合,且重合于點,制作成一個無蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計)(1)若裁開的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無蓋三棱錐容器的容積最大.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設(shè)貧困戶總數(shù)為,利用表中數(shù)據(jù)可得脫貧率,進而可求解.【詳解】設(shè)貧困戶總數(shù)為,脫貧率,所以.故年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的倍.故選:B【點睛】本題考查了概率與統(tǒng)計,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.2、C【解析】
求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數(shù)量積的坐標表示.求向量夾角時,通常代入公式進行計算.3、B【解析】
利用復(fù)數(shù)的運算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點睛】本題考查了復(fù)數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.4、A【解析】,故,故選A.5、B【解析】
先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點,,故選:B【點睛】考查三角函數(shù)的定義和二倍角公式,是基礎(chǔ)題.6、D【解析】
選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.7、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C8、B【解析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應(yīng)于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計算最值,即可得出答案.9、D【解析】
計算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.【點睛】本題考查了斐波那契數(shù)列,意在考查學(xué)生的計算能力和應(yīng)用能力.10、C【解析】
由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點睛】本題考查的知識點是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.11、A【解析】
由題意可知直線過定點即為圓心,由此得到坐標的關(guān)系,再根據(jù)點差法得到直線的斜率與坐標的關(guān)系,由此化簡并求解出離心率的取值范圍.【詳解】設(shè),且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【點睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設(shè)而不求”的目的,大大簡化運算.12、D【解析】
根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導(dǎo)數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點睛】本題考查函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可設(shè),,,由向量的坐標運算,以及恒成立思想可設(shè),的最小值即為點,到直線的距離,求得,可得不大于.【詳解】解:,且,可設(shè),,,,可得,可得的終點均在直線上,由于為任意實數(shù),可得時,的最小值即為點到直線的距離,可得,對于任意的實數(shù),不等式,可得,故答案為:.【點睛】本題主要考查向量的模的求法,以及兩點的距離的運用,考查直線方程的運用,以及點到直線的距離,考查運算能力,屬于中檔題.14、【解析】
求出函數(shù)的導(dǎo)數(shù),由在上,可得在上單調(diào)遞增,則函數(shù)最大值為,即可求出參數(shù)的值.【詳解】解:定義域為,在上單調(diào)遞增,故在上的最大值為故答案為:【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,屬于基礎(chǔ)題.15、【解析】
依題意得,再求點到平面的距離為點到直線的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長均為2,則,點到平面的距離為點到直線的距離所以,所以.故答案為:【點睛】本題考查椎體的體積公式,考查運算能力,是基礎(chǔ)題.16、【解析】
由知x>0,故.令,則.當(dāng)時,;當(dāng)時,.所以在(0,e)上遞增,在(e,+)上遞減.故,即.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)當(dāng)時,令,作出的圖像,結(jié)合圖像即可求解;(Ⅱ)結(jié)合絕對值三角不等式可得,再由“1”的妙用可拼湊為,結(jié)合基本不等式即可求解;【詳解】(Ⅰ)令,作出它們的大致圖像如下:由或(舍),得點橫坐標為2,由對稱性知,點橫坐標為﹣2,因此不等式的解集為.(Ⅱ)..取等號的條件為,即,聯(lián)立得因此的最小值為.【點睛】本題考查絕對值不等式、基本不等式,屬于中檔題18、(1)(2)答案不唯一具體見解析【解析】
(1)利用導(dǎo)數(shù)的幾何意義,設(shè)切點的坐標,用不同的方式求出兩種切線方程,但兩條切線本質(zhì)為同一條,從而得到方程組,再構(gòu)造函數(shù)研究其最大值,進而求得;(2)對函數(shù)進行求導(dǎo)后得,對分三種情況進行一級討論,即,,,結(jié)合函數(shù)圖象的單調(diào)性及零點存在定理,可得函數(shù)零點情況.【詳解】解:(1)曲線在點處的切線方程為,即.令切線與曲線相切于點,則切線方程為,∴,∴,令,則,記,于是,在上單調(diào)遞增,在上單調(diào)遞減,∴,于是,.(2),①當(dāng)時,恒成立,在上單調(diào)遞增,且,∴函數(shù)在上有且僅有一個零點;②當(dāng)時,在R上沒有零點;③當(dāng)時,令,則,即函數(shù)的增區(qū)間是,同理,減區(qū)間是,∴.?。┤?,則,在上沒有零點;ⅱ)若,則有且僅有一個零點;ⅲ)若,則.,令,則,∴當(dāng)時,單調(diào)遞增,.∴又∵,∴在R上恰有兩個零點,綜上所述,當(dāng)時,函數(shù)沒有零點;當(dāng)或時,函數(shù)恰有一個零點;當(dāng)時,恰有兩個零點.【點睛】本題考查導(dǎo)數(shù)的幾何意義、切線方程、零點等知識,求解切線有關(guān)問題時,一定要明確切點坐標.以導(dǎo)數(shù)為工具,研究函數(shù)的圖象特征及性質(zhì),從而得到函數(shù)的零點個數(shù),此時如果用到零點存在定理,必需說明在區(qū)間內(nèi)單調(diào)且找到兩個端點值的函數(shù)值相乘小于0,才算完整的解法.19、(1)(2)證明見解析【解析】
(1)由點可得,由,根據(jù)即可求解;(2)設(shè)直線的方程為,聯(lián)立可得,設(shè),由韋達定理可得,再根據(jù)直線的斜率公式求得;由點B與點Q關(guān)于原點對稱,可設(shè),可求得,則,即可求證.【詳解】解:(1)由題意可知,,又,得,所以橢圓的方程為(2)證明:設(shè)直線的方程為,聯(lián)立,可得,設(shè),則有,因為,所以,又因為點B與點Q關(guān)于原點對稱,所以,即,則有,由點在橢圓上,得,所以,所以,即,所以存在實數(shù),使成立【點睛】本題考查橢圓的標準方程,考查直線的斜率公式的應(yīng)用,考查運算能力.20、(1)(2)【解析】
(1)根據(jù)題意即可寫出該批次產(chǎn)品長度誤差的絕對值的頻率分布列,再根據(jù)期望公式即可求出;(2)由(1)可知,任取一件產(chǎn)品是標準長度的概率為0.4,即可求出隨機抽取2件產(chǎn)品,都不是標準長度產(chǎn)品的概率,由對立事件的概率公式即可得到隨機抽取2件產(chǎn)品,至少有1件是標準長度產(chǎn)品的概率,判斷其是否符合生產(chǎn)要求;當(dāng)不符合要求時,設(shè)生產(chǎn)一件產(chǎn)品為標準長度的概率為,可根據(jù)上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產(chǎn)品長度誤差的絕對值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數(shù)學(xué)期望的估計為.(2)由(1)可知任取一件產(chǎn)品是標準長度的概率為0.4,設(shè)至少有1件是標準長度產(chǎn)品為事件,則,故不符合概率不小于0.8的要求.設(shè)生產(chǎn)一件產(chǎn)品為標準長度的概率為,由題意,又,解得,所以符合要求時,生產(chǎn)一件產(chǎn)品為標準長度的概率的最小值為.【點睛】本題主要考查離散型隨機變量的期望的求法,相互獨立事件同時發(fā)生的概率公式的應(yīng)用,對立事件的概率公式的應(yīng)用,解題關(guān)鍵是對題意的理解,意在考查學(xué)生的數(shù)學(xué)建模能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題.21、(1);(2)極小值;(3)函數(shù)的零點個數(shù)為.【解析】
(1)求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國瓦楞紙板輸送帶行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球RF IC 設(shè)計服務(wù)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國拖拽式滴鹽撒播機行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國運水式模溫機行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 中國居民膳食指南準則一食物多樣合理搭配講解
- 作用于中樞神經(jīng)系統(tǒng)的藥物講解
- 2025軟件產(chǎn)品代理版合同書
- 安防設(shè)備采購政府采購合同
- 2025房屋抵押貸款的合同范本
- 2025承運合同書范本范文
- 民辦幼兒園務(wù)工作計劃
- 2025年華僑港澳臺生聯(lián)招考試高考地理試卷試題(含答案詳解)
- 中國革命戰(zhàn)爭的戰(zhàn)略問題(全文)
- 《數(shù)學(xué)歸納法在中學(xué)解題中的應(yīng)用研究》9000字(論文)
- 《大學(xué)英語四級詞匯大全》
- 第六章-1八綱辨證
- 《工業(yè)機器人系統(tǒng)維護(ABB模塊)》試卷10套
- 危險性化合物的微生物降解-中國石油大學(xué)環(huán)境生物工程
- 浙江省名校新2025屆高一數(shù)學(xué)第一學(xué)期期末達標檢測試題含解析
- 學(xué)習(xí)2024《關(guān)于加強社會組織規(guī)范化建設(shè)推動社會組織高質(zhì)量發(fā)展的意見》解讀課件
- 2024年縣全民健身活動狀況調(diào)查活動方案
評論
0/150
提交評論