版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
平面向量的正交分解及坐標(biāo)表示平面向量加、減運(yùn)算的坐標(biāo)表示平面向量數(shù)乘運(yùn)算的坐標(biāo)表示[目標(biāo)導(dǎo)航]課標(biāo)要求1.了解平面向量的正交分解,掌握向量的坐標(biāo)表示.2.掌握兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.3.正確理解向量坐標(biāo)的概念,區(qū)分點(diǎn)的坐標(biāo)與向量的坐標(biāo).素養(yǎng)達(dá)成通過對(duì)平面向量正交分解、坐標(biāo)表示、加法、減法、數(shù)乘坐標(biāo)運(yùn)算的學(xué)習(xí),提高學(xué)生數(shù)學(xué)運(yùn)算的核心素養(yǎng).1新知導(dǎo)學(xué)素養(yǎng)啟迪1.平面向量的坐標(biāo)表示(1)平面向量的正交分解:把一個(gè)向量分解為兩個(gè)互相垂直的向量.(2)基底:在平面直角坐標(biāo)系中,分別取與x軸、y軸方向相同的兩個(gè)單位向量i,j作為基底.(3)坐標(biāo):對(duì)于平面內(nèi)的任意一個(gè)向量a,有且僅有一對(duì)實(shí)數(shù)x,y,使得a=xi+yj,則有序數(shù)對(duì)(x,y)叫做向量a的坐標(biāo).(4)坐標(biāo)表示:a=(x,y).(5)特殊向量的坐標(biāo):i=(1,0),j=(0,1),0=(0,0).思考1:向量的坐標(biāo)是否就是向量終點(diǎn)的坐標(biāo)?答案:不是,只有當(dāng)向量的起點(diǎn)在坐標(biāo)原點(diǎn)時(shí),向量的坐標(biāo)才等于向量終點(diǎn)的坐標(biāo).2.平面向量的坐標(biāo)運(yùn)算設(shè)向量a=(x1,y1),b=(x2,y2),λ∈R,則有下表項(xiàng)目文字描述符號(hào)表示加法兩個(gè)向量和的坐標(biāo)分別等于這兩個(gè)向量相應(yīng)坐標(biāo)的和a+b=(x1+x2,y1+y2)減法兩個(gè)向量差的坐標(biāo)分別等于這兩個(gè)向量相應(yīng)坐標(biāo)的差a-b=(x1-x2,y1-y2)數(shù)乘實(shí)數(shù)與向量的積的坐標(biāo)等于用這個(gè)實(shí)數(shù)乘原來向量的相應(yīng)坐標(biāo)λa=(λx1,λy1)(x2-x1,y2-y1)3.平面向量共線的坐標(biāo)表示(1)條件:a=(x1,y1),b=(x2,y2),其中b≠0.(2)結(jié)論:當(dāng)且僅當(dāng)x1y2-x2y1=0時(shí),向量a,b(b≠0)共線.思考2:要證明三點(diǎn)共線,是否可以利用平面向量共線證明?(1)已知兩個(gè)向量的坐標(biāo)判定兩向量共線.聯(lián)系平面幾何平行、共線知識(shí),可以證明三點(diǎn)共線、直線平行等幾何問題.要注意區(qū)分向量的共線、平行與幾何中的共線、平行.(2)已知兩個(gè)向量共線,求點(diǎn)或向量的坐標(biāo),求參數(shù)的值,求軌跡方程.要注意方程思想的應(yīng)用,向量共線的條件,向量相等的條件等都可作為列方程的依據(jù).2課堂探究素養(yǎng)培育題型一平面向量的坐標(biāo)表示(2)若A,B,C三點(diǎn)共線,求點(diǎn)C的坐標(biāo).求點(diǎn)或向量坐標(biāo)的常用方法(1)求一個(gè)點(diǎn)的坐標(biāo),可以轉(zhuǎn)化為求該點(diǎn)相對(duì)于坐標(biāo)原點(diǎn)的位置的坐標(biāo).(2)求一個(gè)向量的坐標(biāo)時(shí),可以首先求出這個(gè)向量的起點(diǎn)坐標(biāo)和終點(diǎn)坐標(biāo),再運(yùn)用終點(diǎn)坐標(biāo)減去起點(diǎn)坐標(biāo)得到該向量的坐標(biāo).(2)求點(diǎn)B的坐標(biāo).題型二平面向量的坐標(biāo)運(yùn)算解:由已知得a=(5,-5),b=(-6,-3),c=(1,8).(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)求滿足a=mb+nc的實(shí)數(shù)m,n;平面向量坐標(biāo)運(yùn)算的技巧(1)若已知向量的坐標(biāo),則直接應(yīng)用兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則進(jìn)行.(2)若已知有向線段兩端點(diǎn)的坐標(biāo),則可先求出向量的坐標(biāo),然后再進(jìn)行向量的坐標(biāo)運(yùn)算.(3)向量的線性坐標(biāo)運(yùn)算可完全類比數(shù)的運(yùn)算進(jìn)行.√√題型三向量共線的判定及應(yīng)用向量共線的判定方法√(1)解析:由a∥b可得4m-2×2=0,m=1.故選D.√√√解析:選項(xiàng)A中,3×4-(-2)×6≠0,則a與b不共線;同理,B,C中的兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智能家居音響系統(tǒng)與家裝室內(nèi)裝修合同9篇
- 二零二五版大理石瓷磚研發(fā)與銷售合作合同范本3篇
- 二零二五版民營(yíng)企業(yè)股權(quán)激勵(lì)合同書3篇
- 教育局教師幼兒園專項(xiàng)2025年度勞動(dòng)合同規(guī)范文本3篇
- 二零二五年銷售代理合同:汽車銷售代理及區(qū)域獨(dú)家合作協(xié)議2篇
- 2025年科技孵化器場(chǎng)地租賃保證金合同范本2篇
- 二零二五版39上公司兜底協(xié)議:綠色環(huán)保項(xiàng)目投資風(fēng)險(xiǎn)控制合同3篇
- 二零二五年度鋼箱梁橋工程施工廢棄物處理與回收利用合同3篇
- 二零二五版綠色建筑項(xiàng)目基礎(chǔ)勞務(wù)分包合同2篇
- 二零二五年度高速公路隧道防雷安全防護(hù)合同3篇
- 不銹鋼伸縮縫安裝施工合同
- 水土保持監(jiān)理總結(jié)報(bào)告
- Android移動(dòng)開發(fā)基礎(chǔ)案例教程(第2版)完整全套教學(xué)課件
- 醫(yī)保DRGDIP付費(fèi)基礎(chǔ)知識(shí)醫(yī)院內(nèi)培訓(xùn)課件
- 專題12 工藝流程綜合題- 三年(2022-2024)高考化學(xué)真題分類匯編(全國(guó)版)
- DB32T-經(jīng)成人中心靜脈通路裝置采血技術(shù)規(guī)范
- 【高空拋物侵權(quán)責(zé)任規(guī)定存在的問題及優(yōu)化建議7100字(論文)】
- TDALN 033-2024 學(xué)生飲用奶安全規(guī)范入校管理標(biāo)準(zhǔn)
- 物流無人機(jī)垂直起降場(chǎng)選址與建設(shè)規(guī)范
- 冷庫(kù)存儲(chǔ)合同協(xié)議書范本
- AQ/T 4131-2023 煙花爆竹重大危險(xiǎn)源辨識(shí)(正式版)
評(píng)論
0/150
提交評(píng)論