2024屆江西省上饒市鉛山一中、橫峰中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第1頁
2024屆江西省上饒市鉛山一中、橫峰中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第2頁
2024屆江西省上饒市鉛山一中、橫峰中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第3頁
2024屆江西省上饒市鉛山一中、橫峰中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第4頁
2024屆江西省上饒市鉛山一中、橫峰中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江西省上饒市鉛山一中、橫峰中學(xué)高考仿真卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知隨機(jī)變量滿足,,.若,則()A., B.,C., D.,2.已知實(shí)數(shù),滿足約束條件,則目標(biāo)函數(shù)的最小值為A. B.C. D.3.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.4.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.5.已知的面積是,,,則()A.5 B.或1 C.5或1 D.6.如圖,中,點(diǎn)D在BC上,,將沿AD旋轉(zhuǎn)得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關(guān)系是()A. B.C.,兩種情況都存在 D.存在某一位置使得7.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.58.為了貫徹落實(shí)黨中央精準(zhǔn)扶貧決策,某市將其低收入家庭的基本情況經(jīng)過統(tǒng)計繪制如圖,其中各項(xiàng)統(tǒng)計不重復(fù).若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業(yè)人員中,低收入家庭共有1800戶C.在該市無業(yè)人員中,低收入家庭有4350戶D.在該市大于18歲在讀學(xué)生中,低收入家庭有800戶9.設(shè)為非零實(shí)數(shù),且,則()A. B. C. D.10.一只螞蟻在邊長為的正三角形區(qū)域內(nèi)隨機(jī)爬行,則在離三個頂點(diǎn)距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.11.在中,,,,為的外心,若,,,則()A. B. C. D.12.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.4040二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數(shù)是______.14.已知函數(shù),則________;滿足的的取值范圍為________.15.已知等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則=__________.16.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實(shí)驗(yàn)表明,該藥物釋放量與時間的函數(shù)關(guān)系為(如圖所示),實(shí)驗(yàn)表明,當(dāng)藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進(jìn)行消毒,則在消毒后至少經(jīng)過______分鐘人方可進(jìn)入房間.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機(jī)會,通過隨機(jī)抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:組別男235151812女051010713(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯誤概率不超過0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?(2)若問卷得分不低于80分的人稱為“環(huán)保達(dá)人”.視頻率為概率.①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;②為了鼓勵市民關(guān)注環(huán)保,針對此次的調(diào)查制定了如下獎勵方案:“環(huán)保達(dá)人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應(yīng)的概率.如下表:紅包金額(單位:元)1020概率現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)如圖,橢圓的左、右頂點(diǎn)分別為,,上、下頂點(diǎn)分別為,,且,為等邊三角形,過點(diǎn)的直線與橢圓在軸右側(cè)的部分交于、兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求四邊形面積的取值范圍.19.(12分)設(shè)的內(nèi)角、、的對邊長分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.20.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,射線與曲線交于點(diǎn),將射線繞極點(diǎn)逆時針方向旋轉(zhuǎn)交曲線于點(diǎn).(1)求曲線的參數(shù)方程;(2)求面積的最大值.21.(12分)已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).(1)設(shè)直線,的斜率分別為,,求證:常數(shù);(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);②當(dāng)?shù)膬?nèi)切圓的面積為時,求直線的方程.22.(10分)設(shè)函數(shù),直線與函數(shù)圖象相鄰兩交點(diǎn)的距離為.(Ⅰ)求的值;(Ⅱ)在中,角所對的邊分別是,若點(diǎn)是函數(shù)圖象的一個對稱中心,且,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)二項(xiàng)分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)殡S機(jī)變量滿足,,.所以服從二項(xiàng)分布,由二項(xiàng)分布的性質(zhì)可得:,因?yàn)?,所以,由二次函?shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點(diǎn)睛】本題主要考查二項(xiàng)分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.2、B【解析】

作出不等式組對應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義為動點(diǎn)到定點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對應(yīng)的平面區(qū)域如圖:目標(biāo)函數(shù)的幾何意義為動點(diǎn)到定點(diǎn)的斜率,當(dāng)位于時,此時的斜率最小,此時.故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點(diǎn)之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.3、D【解析】

,,得解.【詳解】,,,所以,故選D【點(diǎn)睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.4、C【解析】

利用基本初等函數(shù)的單調(diào)性判斷各選項(xiàng)中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【詳解】對于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.【點(diǎn)睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.5、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.6、A【解析】

根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進(jìn)行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點(diǎn)作交于點(diǎn),過作的垂線,垂足為,則易得,.設(shè),則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點(diǎn)睛】本題考查空間直線與平面所成的角的大小關(guān)系,考查三角函數(shù)的圖象和性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.7、B【解析】

還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點(diǎn)睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.8、D【解析】

根據(jù)給出的統(tǒng)計圖表,對選項(xiàng)進(jìn)行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業(yè)人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業(yè)人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學(xué)生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【點(diǎn)睛】本題主要考查對統(tǒng)計圖表的認(rèn)識和分析,這類題要認(rèn)真分析圖表的內(nèi)容,讀懂圖表反映出的信息是解題的關(guān)鍵,屬于基礎(chǔ)題.9、C【解析】

取,計算知錯誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.【點(diǎn)睛】本題考查了不等式性質(zhì),意在考查學(xué)生對于不等式性質(zhì)的靈活運(yùn)用.10、A【解析】

求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點(diǎn)到頂點(diǎn)、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點(diǎn)、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點(diǎn)到三個頂點(diǎn)、、的距離都大于的概率是.故選:A.【點(diǎn)睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計算能力,屬于中等題.11、B【解析】

首先根據(jù)題中條件和三角形中幾何關(guān)系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因?yàn)?,所以,又因?yàn)?,所以,,由題可知,所以,,所以.故選:D.【點(diǎn)睛】本題主要考查了三角形外心的性質(zhì),正弦定理,平面向量分解定理,屬于一般題.12、D【解析】

計算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.【點(diǎn)睛】本題考查了斐波那契數(shù)列,意在考查學(xué)生的計算能力和應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先將原式展開成,發(fā)現(xiàn)中不含,故只研究后面一項(xiàng)即可得解.【詳解】,依題意,只需求中的系數(shù),是.故答案為:-40【點(diǎn)睛】本題考查二項(xiàng)式定理性質(zhì),關(guān)鍵是先展開再利用排列組合思想解決,屬于基礎(chǔ)題.14、【解析】

首先由分段函數(shù)的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因?yàn)?,所以,∵,∴?dāng)時,滿足題意,∴;當(dāng)時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點(diǎn)睛】本題考查分段函數(shù)的性質(zhì)的應(yīng)用,分類討論思想,屬于基礎(chǔ)題.15、【解析】

根據(jù)等差中項(xiàng)性質(zhì),結(jié)合等比數(shù)列通項(xiàng)公式即可求得公比;代入表達(dá)式,結(jié)合對數(shù)式的化簡即可求解.【詳解】等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項(xiàng)公式可知,所以,解得或(舍),所以由對數(shù)式運(yùn)算性質(zhì)可得,故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式的簡單應(yīng)用,等比數(shù)列通項(xiàng)公式的用法,對數(shù)式的化簡運(yùn)算,屬于中檔題.16、240【解析】

(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當(dāng)時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進(jìn)行消毒,則在消毒后至少經(jīng)過分鐘人方可進(jìn)入房間.故答案為:(1)2;(2)40【點(diǎn)睛】本題主要考查了分段函數(shù)的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)不能;(2)①;②分布列見解析,.【解析】

(1)根據(jù)題目所給的數(shù)據(jù)可求2×2列聯(lián)表即可;計算K的觀測值K2,對照題目中的表格,得出統(tǒng)計結(jié)論.(2)由相互獨(dú)立事件的概率可得男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率:P=1﹣()3﹣()3,解出X的分布列及數(shù)學(xué)期望E(X)即可;【詳解】(1)由圖中表格可得列聯(lián)表如下:非“環(huán)保關(guān)注者”是“環(huán)保關(guān)注者”合計男104555女153045合計2575100將列聯(lián)表中的數(shù)據(jù)代入公式計算得K”的觀測值,所以在犯錯誤的概率不超過0.05的前提下,不能認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān).(2)視頻率為概率,用戶為男“環(huán)保達(dá)人”的概率為.為女“環(huán)保達(dá)人”的概率為,①抽取的3名用戶中既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率為;②的取值為10,20,30,40.,,,,所以的分布列為10203040.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,考查了概率分布列和期望,計算能力的應(yīng)用問題,是中檔題目.18、(1);(2).【解析】

(1)根據(jù)坐標(biāo)和為等邊三角形可得,進(jìn)而得到橢圓方程;(2)①當(dāng)直線斜率不存在時,易求坐標(biāo),從而得到所求面積;②當(dāng)直線的斜率存在時,設(shè)方程為,與橢圓方程聯(lián)立得到韋達(dá)定理的形式,并確定的取值范圍;利用,代入韋達(dá)定理的結(jié)論可求得關(guān)于的表達(dá)式,采用換元法將問題轉(zhuǎn)化為,的值域的求解問題,結(jié)合函數(shù)單調(diào)性可求得值域;結(jié)合兩種情況的結(jié)論可得最終結(jié)果.【詳解】(1),,為等邊三角形,,橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè)四邊形的面積為.①當(dāng)直線的斜率不存在時,可得,,.②當(dāng)直線的斜率存在時,設(shè)直線的方程為,設(shè),,聯(lián)立得:,,,.,,,,面積.令,則,,令,則,,在定義域內(nèi)單調(diào)遞減,.綜上所述:四邊形面積的取值范圍是.【點(diǎn)睛】本題考查直線與橢圓的綜合應(yīng)用問題,涉及到橢圓方程的求解、橢圓中的四邊形面積的取值范圍的求解問題;關(guān)鍵是能夠?qū)⑺竺娣e表示為關(guān)于某一變量的函數(shù),將問題轉(zhuǎn)化為函數(shù)值域的求解問題.19、(1);(2).【解析】

(1)根據(jù)條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數(shù)值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當(dāng)且僅當(dāng)時取最大值.故的最大值為.【點(diǎn)睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應(yīng)用,以及利用三角恒等變換求函數(shù)的最值,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題20、(1)(為參數(shù));(2).【解析】

(1)根據(jù)伸縮變換結(jié)合曲線的參數(shù)方程可得出曲線的參數(shù)方程;(2)將曲線的方程化為普通方程,然后化為極坐標(biāo)方程,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程,得出和關(guān)于的表達(dá)式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線,則曲線的參數(shù)方程為(為參數(shù));(2)將曲線的參數(shù)方程化為普通方程得,化為極坐標(biāo)方程得,即,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程得,,的面積為,當(dāng)時,的面積取到最大值.【點(diǎn)睛】本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論